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— A survey of open Issues
through the historical perspective
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The two Topcite papers that started
this journey in 1984

Q72 DEPENDENT FARAMETRIZATIONS OF
FPARTON DISTRIBUTION FUNCTIONS. 1092 citations

By D.W. Duke, J.F. Owens (Florida State U.),. FSU-
HEP-831115, Nov 1983. Phys.Rev.D30:49,1984

SUFPER COLLIDER PHYSICS.
By E. Eichten, |. Hinchliffe, Kenneth D. Lane , C.
Quigg,. Feb 1984. 550pp. 1667 citations

Rev.Mod.Phys.56:579,1984



How far have we come along?

What still remains unclear?

How far do we still to go?




Agenda

ne Valence quarks
ne Gluon

e Sea quarks

= Breaking of Isospin Symmetry

= Breaking of flavor SU(3)

» Strangeness Asymmetry?

= [so-spin Violation?

= Heavy Quark Parton Distributions

Uncertainties of
= Parton Distributions, and
= Their Physical Predictions



First, some guantitative measure of the progress

made over the years

(Illustrative only)
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First, some guantitative measure of the progress
made over the years

(Illustrative only)

Fixed-tgt HERA DY-W Jets Total

# Expt pis. 1070 484 145 123 1822
EHLO ‘84 | 11475 7750 2373 331 | 21929
DuOw ‘84 8308 5005 1599 275 | 15187
MoTu ~‘90 3551 3707 857 218 8333
KMRS ~‘90 1815 7709 577 280 | 10381
CTO2M ~'94 1531 1241 646 224 3642
MRSTA ~'94 1590 983 249 231 3054
GRV94 ~'94 1497 3779 302 213 5791
CTO4M ~'98 1414 666 227 206 2513
MRS981~'98 1398 659 111 227 2396
CTOBM 02 1239 508 159 123 2029
MRSTO1 01 1378 530 | __12Q 236 2264
Alekhin 03 1576 572 | (892 )| 270 3309
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NLO fits to more fixed-
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- § The beginning of the Hera era
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Refilnements ...
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e u(xjat Q =10 GeV’

All In the detalls now?

Time to move on to
- something else?
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D quark, the other twin:

Early LO fits

unarkath=10GreV2
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D quark at Q° = 10 GeV*

- NLO, no dramatic changes
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The impact of Hera
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f(x,Q)

0

D quark at Q° = 10 GeV”

The old and the new
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Does the happy story continue?
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and not as happy ...

The story about the gluon Is more interesting,

Gluon Distribution at Q° = 10 GeV° —

EHLQB4
DuOw34
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Gluon Distribution at Q” = 10 GeV>  —

Hera again ...
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Small-x's gain is large-x's loss!
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Uncertainties of PDFs: CTEQS6

Hatio to CTEQE
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Hatio to CTEQE

Uncertainties of PDFs:
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Uncertainties of PDFs: CTEQS6
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Two potential Direct* Measurements

of the Gluon Distribution
(* processes in which the dominant contribution at LO is gluon-initiated.)

» Measurement of the longitudinal Structure
Function in DIS.

Crucial. Still possible at Hera?
* Direct Photon Production in Hadron Collisions

= Data exist—but not always consistent with each
other (WA70 and E706);

» Theoretical uncertainties in NLO QCD
overwhelming; Resummed QCD promising, but
has not delivered so far.

+ Jet production at Hera and Hadron colliders too.




The non-strange sea quarks:
do they observe Isospin symmetry?
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Experimentalists: Let Nature speak for him/herselfl
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More experimental inputs: (mostly DY asymmetry)
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Caution:

1
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*Modern fit” without DY and Collider input:
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New DY data (E866) have raised new
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Comparing the Valence Quarks of the Nucleon:

D(Ix)fU (x) atl Q2 = iﬁ GeVl — EHLQS4

104107 102 0.05 0.1 3 3 4 5 6 .78
X (Scale is linear in x )




\ — MoTudD | _

D(Ix)fU (x) atl Q2 = iﬁ GeVl — EHLQS4
DuQw84

m-i 0.05 (.1 2 3 4 5 6 7.8
X (Scale is linear inx)



D{x)/U(x) at ‘Q2 =10 GeV’* — EHLQS4
DuOw84
11 — MoTud0 | _|

104107 10 0.05 0.1 2 3 4 5 6 .78
X (Scale is linear in x™°)







Odd man out?

DU at O = 10 GeV’ — oeM
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Comments on D/U ratio determination

CDF W lepton asymmetry played an important
role in existing analyses.

Preliminary results of ES66 pp pd cross section
data threw some doubt on current PDFs. But
data remain preliminary. (See WG talk.)

Charged Current cross sections measured at
HERA will provide the cleanest determination of
this ratio.

WHH/W- ratio at LHC will provide precise input to
future analysis of this quantity.
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Strange Content of the Nucleon Structure
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“(s+sb)/(db+ub) at Q° = 10 GeV* | Drows4

1 Experimental input: (low statistics) data
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on Dimuon {charm) production in
Neutrino-Nucleus scattering.
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-CCFR-NuTeV (high statistics) data for

- dimuon production from v A and anti-v A/
 scattering.
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All together:
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Is the strangeness sector charge symmetric?

; Strangeness Asymmetry: s / s at Q2 =10 GeV’
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Strangeness Asymmetry: s / s at Q2 =10 Gth
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Now, there are new CCFR-NuTeV dimuon
data that can, in principle, determine
s(x) and sbar(x) separately!
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What do we know about heavy quark
distributions?

There is yet very little direct experimental input.

Theory formulation further depend on the “scheme”

chosen to handle heavy quark effects in PQCD—fixed-
flavor-number (FFN) vs. variable-flavor-number (VFN)
schemes, threshold suppression prescriptions, ... etc.

All ¢(x,Q) and b(x,Q) found in existing PDF sets are
based on “radiatively generated” heavy flavors.

Are there any “Intrinsic” heavy quarks?




Yet unexplored Territories ...
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Important issue: Uncertainties of PDFs and
their Physical Predictions
* The statistical principles and methods for uncertainty

analyses are well established in principle:

Likelihood, 7, ... etc.---all textbook stuff. Nothing
extraordinary, no particular insight required.

* The real world 1s not textbook-likel The world of Global
Analysis (being rather complex and imperfect) has many

= Unknown theorefical uncertainties;

= Un-understood experimental inconsistencies—
unknown underlying sources of uncertainties.

— matters that textbooks offer little immediate help!

» To face this reality, and make progress, physics
judgments (subjectivity) and development of effective
and flexible statistical analysis tools are required.



Reality #1 : compatibility of experiments

HI [ BCDMS [ EG65 | ZEUS | NMC [ LEP
H1-MRST set : 67% | 21% | 05% | <0.1% | 31%
BCDMS-MRST set | 85% - 2% | 1.5% | <0.1% | 0.5%
E665-MRST set 30% | 829 = | 1.6% | L.0% | 99%
ZEUS-MRST set 9% | <01% |5.0% | - | <0.1% | 24%
NMC-MRST set | <0.1% | 28% | 1.5% | <0.1% - | 3%

Table 2: The confidence level of each experiment given the different sets.
The name of the set is composed of all included experiments and the PDF
parameterization choice.

(Giele etal, 2001)



Basic dilemma:
What is the real uncertainty on a measured quantity due to
apparently incompatible experimental results?

Imagine that two expenimental groups have
measured a quantity #, with the results shown.
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What 1s the value of #7 What do confidence levels mean?
(This is common occurrence in the real world.)

Are all experimental errors understood? Should the
errors be taken at face value?




Realistic Case: Prediction of W Z Xsec. (GKK)

Tevatron Z cross section
12 “16” predictions,
many are statisti- — H1+BCDMS+E665+LEP
cally incompatible — H1+BCDMS+E665
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values or the
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PDF set nomber
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Case study: CTEQ global analysis of o, (3? method)

Estimate the uncertainty
on the predicted cross ‘“‘
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This figure shows broader ranges for each experiment based on the **90%
confidence level” (cumulative distribution function of the rescaled ¥2).

Aoy (Tevatron
25 w ( )

BCDMSp
BCDMSd

NMCr
NMUCrx
CCFR3
F605
it
=B=Fw
bzl
el

I
I
|
|
|
I
|
|
I

aw (nb)
[ )
— N
I
—
@
S -
—
.

ot

»
I I
;i r—E6
ol
I I
I I
I I

_|—._|—€DF_':EI




“Uncertainty” in 3 scenarios

(either directly measured or indirectly inferred physical quantity 9)
v2 4Lt v2 4 L1 v2 4L

O — P o ———— L —— L I

Uncertainty dominated by:

8 A® S A

= Only case | is textbook safe; but |l and Ill are “real’.

* There are commonly used prescriptions for dealing with |l and ll;
but none can be rigorously justified.

= Over time, inconsistencies are eliminated by refined experiments
and analyses

This is the Source of large “tolerance”, Ay?



Quantifying uncertainties, experimental and
theoretical, has been, and continues to be,
an active area of current research.

For concrete examples, case studies,
comparison between different approaches,
cf. WG 1 talk(s) and discussions.




But, where do we stand?

My take ...

» The important issue is hot about methodology: likelihood vs.
v or Monte Carlo sampling or Hessian approximation, ...
They are all equivalent, given consistent theoretical and

experimental input.
* The challenges concern:

+ Refrain from the ideological {(aka “rigorous”™) stance that
confuse the scene (since the world is not perfect);

+ Develop effective, flexible statistical tools tailored to cope
with the complex issues of Global analysis, with the goals:

 to allow sensible estimates of "90 %" confidence
uncertainty ranges (rather than “1-o error limits”).

« 10 help pin-point the sources of existing trouble spots.



(continued)

Even so, the ultimate goal surely has to be: to
eliminate all experimental iIncompatibilities
and theoretical uncertainties, so we can have
1-c errors on parton distributions and their
predictions?

The question Is ruled out of order:

Before we get anywhere, on the time scale it
requires to think about this goal, New Physics

surely would have been discovered; and we
would be much too busy asking, and

answering, other questions.



Agenda for studying Nucleon Structure
and Collider Physics

» Large x behavior of G(x,Q), u(x, Q) and d(x, Q);

New frontiers on detailed flavor structure of the nucleon:
* FPinning down the strangeness sector of nucleon structure;

« Understanding the charm content of the nucleon;
Precision W/Z phenomenology at the Tevatron and LHC
* Predictions by and feedback to global analysis

* Transverse momentum, resummation and ¥W-mass

« NNLO analysis

« Higgs, Top, and Beyond SM Phenomenology



