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Preliminaries

T = R/Z – the unit circle
‖x‖ = distance of x ∈ R to the nearest integer
since f (x) = ‖x‖ is periodic, it may be viewed as a function on T

̺(x , y) = ‖x − y‖ – a Polish metric on T

Put χn(x) = ‖nx‖.
Functions χn : T → T, n ∈ Z, are characters of T, i.e., continuous group
homomorphisms from T to T.
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Kronecker’s Approximation Theorem

independent = linearly independent over Q

Theorem (Kronecker’s Approximation Theorem)

Let x1, . . . , xk ∈ R be independent irrational numbers and let

y1, . . . , yk ∈ R be arbitrary.

Then for every m and ε > 0 there exists n > m such that for every i ,

‖nxi − yi‖ < ε.
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Dirichlet and Kronecker sets

Definition

1. X ⊆ T is called a Dirichlet set if there is an increasing sequence of
integers {nk}k∈N such that χnk

⇉ 0 on X .

2. X ⊆ T is called a Kronecker set if for every continuous function
f : T → T there is an increasing sequence of integers {nk}k∈N such
that χnk

⇉ f on X .

Recall that χnk
(x) = ‖nkx‖.

By the original definitions, only closed sets were considered.
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Dirichlet and Kronecker sets

Definition

1. X ⊆ T is called a Dirichlet set if there is an increasing sequence of
integers {nk}k∈N such that χnk

⇉ 0 on X .

2. X ⊆ T is called a Kronecker set if for every continuous function
f : T → T there is an increasing sequence of integers {nk}k∈N such
that χnk

⇉ f on X .

Recall that χnk
(x) = ‖nkx‖.

By the original definitions, only closed sets were considered.

Fact

Every Kronecker set is independent.

Proof. If x = x1 + · · ·+ xk and χnk
⇉ f on {x , x1, . . . , xk} then

f (x) = f (x1) + · · ·+ f (xk ).
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Families of trigonometric thin sets

Definition

X ⊆ T is called

1. a pseudo-Dirichlet set if there is an increasing sequence of integers

{nk}k∈N such that χnk

QN
−→ 0 on X ,

2. an Arbault set if there is an increasing sequence of integers {nk}k∈N

such that χnk
→ 0 on X ,

3. a Niemytzki set if there is a sequence positive reals {an}n∈N such
that

∑
an = ∞ and

∑
anχn < ∞ for x ∈ X ,

4. a weak Dirichlet set if X ⊆ Y for some analytic set Y such that for
every Borel measure µ there is an increasing sequence of positive
integers {nk}k∈N satisfying

∫
Y
χnk

dµ → 0.
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Families of trigonometric thin sets

Definition

X ⊆ T is called

1. a pseudo-Dirichlet set if there is an increasing sequence of integers

{nk}k∈N such that χnk

QN
−→ 0 on X ,

2. an Arbault set if there is an increasing sequence of integers {nk}k∈N

such that χnk
→ 0 on X ,

3. a Niemytzki set if there is a sequence positive reals {an}n∈N such
that

∑
an = ∞ and

∑
anχn < ∞ for x ∈ X ,

4. a weak Dirichlet set if X ⊆ Y for some analytic set Y such that for
every Borel measure µ there is an increasing sequence of positive
integers {nk}k∈N satisfying

∫
Y
χnk

dµ → 0.

Remark. In a ‘standard’ definition of weak Dirichlet sets, Y is allowed to
be universally measurable.
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Families of trigonometric thin sets

K ⊂ D ⊂ pD
⊂

⊂

A

N

⊂

⊂
wD

K, D have bases consisting of closed subsets of T
pD, N have bases consisting of Fσ subgroups of T
A has a base consisting of Fσδ subgroups of T
wD has a base consisting of analytic subgroups of T
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Permitted and additive sets

hereditary = closed under taking subsets
A+ B = {x + y : x ∈ A ∧ y ∈ B}

Definition

1. Let F be a hereditary family of subsets of a set X .
A set A ⊆ X is called F -permitted if ∀B ∈ F A ∪ B ∈ F .

2. Let F be a hereditary family of subsets of a group G .
A set A ⊆ G is called F -additive if ∀B ∈ F A+ B ∈ F .
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Permitted and additive sets

hereditary = closed under taking subsets
A+ B = {x + y : x ∈ A ∧ y ∈ B}

Definition

1. Let F be a hereditary family of subsets of a set X .
A set A ⊆ X is called F -permitted if ∀B ∈ F A ∪ B ∈ F .

2. Let F be a hereditary family of subsets of a group G .
A set A ⊆ G is called F -additive if ∀B ∈ F A+ B ∈ F .

Perm(F) = {A ⊆ X : A is F -permitted}
Add(F) = {A ⊆ X : A is F -additive}

Fact

1. If X /∈ F then Perm(F) is an ideal.

2. If F has a base consisting of subgroups of G then

Perm(F) = Add(F).

Peter Eliaš Groups generated by Dirichlet sets



Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N -permitted set?
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Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N -permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a

perfect set Q of measure zero such that P + Q = T.
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Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N -permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a

perfect set Q of measure zero such that P + Q = T.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect

Dirichlet set D such that P + D = T.
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Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N -permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a

perfect set Q of measure zero such that P + Q = T.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect

Dirichlet set D such that P + D = T.

Theorem (T. Körner, 1974)

Let P ⊆ T be a perfect set. Then there exists a Kronecker set K ⊆ T

such that P + K = T.
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Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N -permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a

perfect set Q of measure zero such that P + Q = T.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect

Dirichlet set D such that P + D = T.

Theorem (T. Körner, 1974)

Let P ⊆ T be a perfect set. Then there exists a Kronecker set K ⊆ T

such that P + K = T.

Corollary

Let F be a hereditary family generated by proper subgroups of T

containing all Kronecker sets. Then there is no perfect F -permitted set.
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