Families of sets and functions related to the uniform convergence of characters

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

XXXVIII. Summer Symposium in Real Analysis Praha, 2014

・ 同 ト ・ ヨ ト ・ ヨ ト

Notation

 ${\mathbb T}$ – the unit circle – compact Polish group

•
$$\mathbb{T} = \{z \in \mathbb{C}\} : |z| = 1\}, x \in \mathbb{R} \mapsto e^{2\pi i x} \in \mathbb{T}$$

multiplication and topology inherited from \mathbb{C}

• $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, $x \in \mathbb{R} \mapsto \phi(x) = [x]_{\sim}$ where $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$ addition modulo integers, quotient topology d(x, y) = ||x - y||, where $||t|| = \min\{|x| : \phi(x) = t\}$, is an invariant metric on \mathbb{T}

C(X,Y) – space of all continuous functions $f:X\to Y$ with the topology of uniform convergence

K(X) – space of compact subsets of X (with Vietoris topology),

characters of \mathbb{T} – continuous group homomorphisms $\chi \in C(\mathbb{T}, \mathbb{T})$, these are exactly functions $\chi_n(x) = nx$ for $n \in \mathbb{Z}$

Definition (Hewitt, Kakutani (1960), Rudin (1962))

A set $E \in K(\mathbb{T})$ is a Kronecker set if $(\forall f \in C(\mathbb{T},\mathbb{T}))(\forall \varepsilon > 0)(\exists n) \|\chi_n(x) - f(x)\| < \varepsilon.$

- We can assume that n is arbitrarily large.
- Every finite independent set is Kronecker, where E is independent if $k_1x_1 + \cdots + k_nx_n = 0$ implies $k_1 = \cdots = k_n = 0$ for any $k_1, \ldots, k_n \in \mathbb{Z}$, $x_1, \ldots, x_n \in E$.
- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- Every perfect set has a perfect Kronecker subset.
- For any perfect set P there exists a perfect Kronecker set Q such that P + Q = T.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Definition (Kahane (1969))

A set $E \in K(\mathbb{T})$ is a Dirichlet set if $(\forall \varepsilon > 0)(\exists n \neq 0) \|\chi_n(x)\| < \varepsilon.$

- We can assume that n is arbitrarily large.
- Every Kronecker set is a Dirichlet set.
- A group generated by a Dirichlet set is proper subgroup of T, hence is meager and of Lebesgue measure zero.
- A shift of a Dirichlet set is a Dirichlet set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $f_k \rightrightarrows f$ denote the uniform convergence of a sequence of functions.

Consider the following binary relation $R \subseteq K(\mathbb{T}) \times C(\mathbb{T}, \mathbb{T})$: R(E, f) iff there exists an increasing sequence $\{n_k\}_{k \in \mathbb{N}}$ such that $\chi_{n_k} \rightrightarrows f$ on E.

For
$$\mathcal{H} \subseteq C(\mathbb{T}, \mathbb{T})$$
 and $\mathcal{E} \subseteq K(\mathbb{T})$, define
 $\mathcal{K}(\mathcal{H}) = \{ E \in K(\mathbb{T}) : (\forall f \in \mathcal{H}) R(E, f) \},$
 $\mathcal{F}(\mathcal{E}) = \{ f \in C(\mathbb{T}, \mathbb{T}) : (\forall E \in \mathcal{E}) R(E, f) \}.$

Examples. $\{E : E \text{ is Kronecker}\} = \mathcal{K}(C(\mathbb{T}, \mathbb{T})),$ $\{E : E \text{ is Dirichlet}\} = \mathcal{K}(\{0\}) = \mathcal{K}(\{\chi_n : n \in \mathbb{Z}\}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Pair $(\mathcal{F}, \mathcal{K})$ forms a Galois connection between ordered sets $(\mathcal{P}(K(\mathbb{T})), \subseteq)$ and $(\mathcal{P}(C(\mathbb{T}, \mathbb{T})), \subseteq)$, i.e., $\mathcal{E} \subseteq \mathcal{F}(\mathcal{H})$ iff $\mathcal{H} \subseteq \mathcal{K}(\mathcal{E})$, for any \mathcal{E}, \mathcal{H} .

- \mathcal{K} and \mathcal{F} are order-reversing.
- $\mathcal{K} \circ \mathcal{F}$ and $\mathcal{F} \circ \mathcal{K}$ are closure operators.

 $(\mathcal{E},\mathcal{H})$ is called a stable pair if $\mathcal{E} = \mathcal{K}(\mathcal{H})$ and $\mathcal{H} = \mathcal{F}(\mathcal{E})$.

• Stable pairs ordered by $(\mathcal{E}_1, \mathcal{H}_1) \leq (\mathcal{E}_2, \mathcal{H}_2)$ iff $\mathcal{H}_1 \subseteq \mathcal{H}_2$ iff $\mathcal{E}_1 \supseteq \mathcal{E}_2$ form a complete lattice, where $\bigvee_i (\mathcal{E}_i, \mathcal{H}_i) = \left(\bigcap_i \mathcal{E}_i, \mathcal{F}(\bigcap_i \mathcal{E}_i)\right)$, $\bigwedge_i (\mathcal{E}_i, \mathcal{H}_i) = \left(\mathcal{K}(\bigcap_i \mathcal{H}_i), \bigcap_i \mathcal{H}_i\right)$.

・ 同 ト ・ 三 ト ・ 三 ト

What is the structure of this lattice?

- top element: $({E : E \text{ is Kronecker}}, C(\mathbb{T}, \mathbb{T}))$
- bottom element: $(K(\mathbb{T}), \emptyset)$
- one atom: $({E : E \text{ is Dirichlet}}, {\chi_n : n \in \mathbb{Z}})$

The last statement follows from the following fact.

Lemma

Let
$$f \in C(\mathbb{T}, \mathbb{T})$$
. Then $f \in \{\chi_n : n \in \mathbb{Z}\}$ iff $(\forall x, y \in \mathbb{T}) f(x - y) = f(x) - f(y)$.

(4月) (4日) (4日)

Strongly Dirichlet sets

Denote $C = \{f \in C(\mathbb{T}, \mathbb{T}) : f \text{ is constant}\},\$ $TC = \{\chi_n + c : n \in \mathbb{Z} \land c \in \mathbb{T}\}.$

Definition

A set $E \in K(\mathbb{T})$ is a strongly Dirichlet set if $E \in \mathcal{K}(C)$.

Fact. $\mathcal{K}(C) = \mathcal{K}(TC)$.

Lemma

Let
$$f \in C(\mathbb{T}, \mathbb{T})$$
. Then $f \in TC$ iff $(\forall x, y \in \mathbb{T}) f(2x - y) = 2f(x) - f(y)$.

Theorem

 $({E : E \text{ is strongly Dirichlet}}, TC)$ is a stable pair.

Affinely independent sets

Fact

- 1. Every strongly Dirichlet set E is affinely independent, i.e., $k_1x_1 + \cdots + k_nx_n = 0$ implies that $k_1 + \cdots + k_n = 0$, for all $x_1, \ldots, x_n \in E$ and $k_1, \ldots, k_n \in \mathbb{Z}$.
- 2. Every finite affinely independent set is strongly Dirichlet.

For $E \subseteq \mathbb{T}$, denote

$$\operatorname{Aff}(E) = \{ x \in \mathbb{T} : (\exists x_1, \dots, x_n \in E) (\exists k, k_1, \dots, k_n \in \mathbb{Z}) \}$$

 $k = k_1 + \dots + k_n \neq 0 \land kx = k_1x_1 + \dots + k_nx_n\}.$ Then E is affinely independent iff $E \subseteq Aff(F)$ for some independent set F.

Theorem

If $E \subseteq \mathbb{T}$ is Kronecker then Aff(E) is strongly Dirichlet.

m-Dirichlet sets

Let $p \in \mathbb{N}$. Denote $C_m = \{f \in C(\mathbb{T}, \mathbb{T}) : (\forall x \in \mathbb{T}) m f(x) = 0\},$ $TC_m = \{\chi_n : n \in \mathbb{Z}\} + C_m.$

Definition

A set $E \in K(\mathbb{T})$ is an *m*-Dirichlet set if $E = \mathcal{K}(C_m)$.

Fact. $\mathcal{K}(C_m) = \mathcal{K}(TC_m)$.

Lemma

Let
$$f \in C(\mathbb{T},\mathbb{T})$$
. Then $f \in TC_m$ iff $(\forall x, y \in \mathbb{T}) f(2x-y) = 2f(x) - f(y) \wedge mf(x-y) = mf(x) - mf(y)$.

Theorem

 $({E : E \text{ is } m\text{-Dirichlet}}, TC_m)$ is a stable pair.

(日) (同) (E) (E) (E)

Definition

Let $m \in \mathbb{N}$. A set $E \subseteq \mathbb{T}$ is *m*-Dirichlet if $k_1x_1 + \cdots + k_nx_n = 0$ implies that $m \mid k_1 + \cdots + k_n$, for any $x_1, \ldots, x_n \in E$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Theorem

- 1. Every *m*-Dirichlet set is *m*-independent.
- 2. Every finite *m*-independent is *m*-Dirichlet.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

- Hewitt E., Kakutani S., A class of multiplicative linear functionals on a measure algebra of a locally compact abelian group, Illinois J. Math. 4 (1960), 553–574.
- 2. Rudin W., *Fourier Analysis on Groups*, Interscience Tracts in Pure and Applied Mathematics **12**, Interscience Publishers, 1962.
- 4. Kahane J.-P., Approximation par des exponentielles imaginaires; ensembles de Dirichlet et ensembles de Kronecker, In: Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968), Birkhäuser, 1969, pp. 190–202.
- 5. Körner T.W., Some results on Kronecker, Dirichlet and Helson sets, Ann. Inst. Fourier **20** (1970), 219–234.
- 6. Körner T.W., Some results on Kronecker, Dirichlet and Helson sets II, J. Anal. Math. 27 (1974), 260–388.

・ロン ・回 と ・ ヨ と ・ ヨ と