A HIERARCHY OF THIN SETS RELATED TO THE BOUNDEDNESS OF TRIGONOMETRIC SERIES

PETER ELIAŠ

ABSTRACT. We study the family \mathcal{B}_0 of the sets on which some series of the form $\sum_{k\in\mathbb{N}} |\sin \pi n_k x|$ is uniformly bounded. We show that the families \mathcal{B}_0^c of all sets admitting the boundary c form a hierarchy which is incontinuous with respect to the operations of intersection and union.

Let us recall two kinds of thin sets studied in harmonic analysis. A set $X \subseteq [0,1]$ is called an N-set (in honour of V. V. Nemytskiĭ) if there exists a trigonometric series absolutely converging on X but not converging absolutely everywhere; it is called an N_0 -set if there exists a series of the form $\sum_{k \in \mathbb{N}} |\sin \pi n_k x|$ converging on X. J. Arbault [1] showed that the family \mathcal{N}_0 of all N₀-sets is a proper subfamily of the family \mathcal{N} of all N-sets, and both families share some common properties.

In the paper [3] we examined several modifications of the definitions of the families \mathcal{N} and \mathcal{N}_0 , and compared the obtained families one to another. We showed that the family \mathcal{B}_0 of all sets on which some series of the form $\sum_{k \in \mathbb{N}} |\sin \pi n_k x|$ is uniformly bounded, differs from previously known "classical" families. In the present paper we continue the study of the family \mathcal{B}_0 considering the hierarchy of the families \mathcal{B}_0^c of all sets admitting the boundary c. We show that if c < d then \mathcal{B}_0^c is a proper subfamily of \mathcal{B}_0^d , and $\bigcup_{d < c} \mathcal{B}_0^d \subsetneqq \mathcal{B}_0^c \subsetneqq \bigcap_{d > c} \mathcal{B}_0^d$ for every c > 0. For a review of families of trigonometric thin sets, some historical notes, and

also for many new results we refer the reader to the paper [2].

We shall deal with the quotient group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$; however, we will not distinguish between the elements of $\mathbb T$ and the reals, or between the functions defined on $\mathbb T$ and the corresponding periodic functions on \mathbb{R} . For a real x, let [x] denote the integer part of x and let ||x|| denote the distance of x to the nearest integer, i. e. [x] = $\max\{k \in \mathbb{Z} : k \leq x\}$ and $\|x\| = \min\{|x-k| : k \in \mathbb{Z}\}$. Let us note that $\|x\| - \|y\| \leq |x||$ $||x+y|| \leq ||x|| + ||y||$ and ||-x|| = ||x|| for all $x, y \in \mathbb{T}$. The space \mathbb{T} equipped with the metric $\rho(x, y) = ||x - y||$ is a compact topological group.

In an accordance with [3], we define B_0 -sets as follows.

Definition 1. A set $X \subseteq \mathbb{T}$ is a B_0 -set if there exist an increasing sequence $\{n_k\}_{k \in \mathbb{N}}$ of natural numbers such that the series $\sum_{k \in \mathbb{N}} ||n_k x||$ is uniformly bounded on X, i. e. there exists a real c such that $\sum_{k \in \mathbb{N}} ||n_k x|| \le c$ for all $x \in X$. The family of all B_0 -sets is denoted by \mathcal{B}_0 .

Since $2 ||x|| \le |\sin \pi x| \le \pi ||x||$ for all $x \in \mathbb{T}$, it is clear that the previous definition remains equivalent if we replace $\sum_{k \in \mathbb{N}} ||n_k x||$ by $\sum_{k \in \mathbb{N}} |\sin \pi n_k x|$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A46; Secondary 42A28.

Key words and phrases. Trigonometric thin sets, No-sets, Bo-sets, uniform boundedness.

The work on this paper was supported by grant 2/4034/97 of Slovak Grant Agency VEGA. The research was partly done when the author was visiting the Mathematical Institute of the University in Bonn.

PETER ELIAŠ

Proposition 2. A set $X \subseteq \mathbb{T}$ is a B_0 -set if and only if there exist an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers and a sequence $\{a_k\}_{k\in\mathbb{N}}$ of elements of \mathbb{T} such that the series $\sum_{k\in\mathbb{N}} ||n_k x + a_k||$ is uniformly bounded on X.

Proof. It follows immediately from Lemma 3 below.

Lemma 3. Let $\{n_k\}_{k\in\mathbb{N}}$ be an increasing sequence of natural numbers and let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence of elements of \mathbb{T} . Then for every $\varepsilon > 0$ there exists an increasing sequence $\{m_j\}_{j\in\mathbb{N}}$ of natural numbers such that $\sum_{j\in\mathbb{N}} ||m_j x|| \leq \sum_{k\in\mathbb{N}} ||n_k x + a_k|| + \varepsilon$ for every $x \in \mathbb{T}$.

Proof. We use a classical argument. Since \mathbb{T} is compact, there exists an increasing function $h: \mathbb{N} \to \mathbb{N}$ such that the sequence $\{n_{h(2j+1)} - n_{h(2j)}\}_{j \in \mathbb{N}}$ is increasing and $\sum_{j \in \mathbb{N}} \|a_{h(2j+1)} - a_{h(2j)}\| \leq \varepsilon$. It suffices to put $m_j = n_{h(2j+1)} - n_{h(2j)}$. \Box

However, we do not know the answer for the following question.

Problem 4. Let $\{n_k\}_{k\in\mathbb{N}}$ be an increasing sequence of natural numbers and let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence of elements of \mathbb{T} . Does there exist a sequence $\{m_j\}_{j\in\mathbb{N}}$ such that $\sum_{j\in\mathbb{N}} ||m_j x|| \leq \sum_{k\in\mathbb{N}} ||n_k x + a_k||$ for all $x \in \mathbb{T}$?

Let us now define the families \mathcal{B}_0^c . Here the use of the series $\sum_{k \in \mathbb{N}} ||n_k x||$ and $\sum_{k \in \mathbb{N}} |\sin \pi n_k x|$ is not equivalent; for simplicity we will consider the first one.

Definition 5. Let c be a positive real. A set $X \subseteq \mathbb{T}$ is called a B_0^c -set if there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\sum_{k\in\mathbb{N}} ||n_k x|| \leq c$ for all $x \in X$. The family of all B_0^c -sets is denoted by \mathcal{B}_0^c .

We show that in the previous definition, ' \leq ' can be replaced by '<'.

Lemma 6. Let c > 0, $X \subseteq \mathbb{T}$, and let $\{n_k\}_{k \in \mathbb{N}}$ be such that $\sum_{k \in \mathbb{N}} ||n_k x|| \leq c$ for all $x \in X$. Then there exists $j \in \mathbb{N}$ such that $\sum_{k>j} ||n_k x|| < c$ for all $x \in X$.

Proof. Suppose for a contradiction that for every j there exists $x_j \in X$ such that $\sum_{k>j} \|n_k x_j\| \ge c$. Thus $\|n_k x_j\| = 0$ for all $k \le j$ and $\|n_{k_j} x_j\| > 0$ for some $k_j > j$. Hence for every j and k such that $k \ge k_j$ we have $\|n_{k_j} x_j\| > 0$ and $\|n_{k_j} x_k\| = 0$, and thus $x_j \ne x_k$. It follows that the set $\{x_j : j \in \mathbb{N}\}$ is infinite. However, this is impossible since for every k there are only finitely many $x \in \mathbb{T}$ such that $\|n_k x\| = 0$.

Let us recall that a set $X \subseteq \mathbb{T}$ is called a *Dirichlet set* (a *D-set*) if there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that the sequence $\{\|n_k x\|\}_{k\in\mathbb{N}}$ is uniformly converging to 0 on X. The family of all D-sets is denoted by \mathcal{D} . From the definition we can immediately see that $\bigcup_{c>0} \mathcal{B}_0^c = \mathcal{B}_0$ and $\bigcap_{c>0} \mathcal{B}_0^c = \mathcal{D}$.

We do not know whether an analogue of Proposition 2 holds true in the case of B_0^c -sets.

Problem 7. Let c > 0, let $\{n_k\}_{k \in \mathbb{N}}$ be an increasing sequence of natural numbers and let $\{a_k\}_{k \in \mathbb{N}}$ be a sequence of elements of \mathbb{T} . Does there exist a sequence $\{m_j\}_{j \in \mathbb{N}}$ such that for all $x \in \mathbb{T}$, $\sum_{j \in \mathbb{N}} ||m_j x|| \le c$ whenever $\sum_{k \in \mathbb{N}} ||n_k x + a_k|| \le c$?

Fix a positive real c. Let us denote by \mathcal{B}_0^{*c} the family of all sets $X \subseteq \mathbb{T}$ for which there exist sequences $\{n_k\}_{k\in\mathbb{N}}$ and $\{a_k\}_{k\in\mathbb{N}}$ such that $\sum_{k\in\mathbb{N}} ||n_k x + a_k|| \leq c$ for all $x \in X$. Clearly $\mathcal{B}_0^c \subseteq \mathcal{B}_0^{*c}$, and Problem 7 asks whether the equality holds true. From Lemma 3 it follows that $\mathcal{B}_0^{*c} \subseteq \bigcap_{d>c} \mathcal{B}_0^d$. Thus for every c > 0 we have

$$\bigcup_{d < c} \mathcal{B}_0^d = \bigcup_{d < c} \mathcal{B}_0^{*d} \subseteq \mathcal{B}_0^c \subseteq \mathcal{B}_0^{*c} \subseteq \bigcap_{d > c} \mathcal{B}_0^d = \bigcap_{d > c} \mathcal{B}_0^{*d}$$

In Propositions 10 and 11 we will show that the first and the last inclusions are proper.

Let $\{m_j\}_{j\in\mathbb{N}}$ be an increasing sequence of natural numbers and let $\{a_j\}_{j\in\mathbb{N}}$ be a sequence of elements of \mathbb{T} . For every positive integer n, let $\alpha(n), \beta(n) \in \mathbb{N}$ be such that $n = 2^{\alpha(n)}\beta(n)$ and $\beta(n)$ is odd.

Lemma 8. Let $p, r \in \mathbb{N}$, $p \ge 1$. Assume that the set $\{\alpha(m_j) : j \in \mathbb{N}\}$ is infinite. There exist $j, q \in \mathbb{N}$ and $s \in \{-1, 1\}$ such that $q \ge r$ and $\|sm_j 2^{-q2^p} + a_j\| \ge 2^{-2^p}$.

Proof. Put $J = \{j \in \mathbb{N} : ||a_j|| \ge 2^{-2^p}\}$. Clearly either $\{\alpha(m_j) : j \in J\}$ or $\{\alpha(m_j) : j \in J\}$ $j \notin J$ is infinite.

In the first case find $j \in J$ such that $\alpha(m_j) \ge r2^p$, and put q = r and s = 1. Then $sm_j 2^{-q2^p}$ is an integer and thus $||sm_j 2^{-q2^p} + a_j|| = ||a_j|| \ge 2^{-2^p}$.

In the latter case find $j \notin J$ such that $\alpha(m_j) \ge (r-1)2^p$ and put $q = [\alpha(m_j)2^{-p}] + 1$. Then clearly $q \ge r$. We also have $0 < q2^p - \alpha(m_j) \le 2^p$ and thus $||m_j2^{-q2^p}|| = ||\beta(m_j)2^{\alpha(m_j)-q2^p}|| \ge 2^{-2^p}$. Since $||a_j|| \le 2^{-2^p} \le 2^{-2}$, we can conclude that either $||m_j2^{-q2^p} + a_j|| \ge 2^{-2^p}$ or $||m_j2^{-q2^p} - a_j|| \ge 2^{-2^p}$.

Lemma 9. Let θ be a real such that $0 < \theta \leq 1/2$, let $\{p_k\}_{k \in \mathbb{N}}$ be a sequence of positive integers, and let $\{\varepsilon_k\}_{k\in\mathbb{N}}$ be a sequence of positive reals. Assume that $\lim_{j\to\infty} \alpha(m_j) = \infty$. There exists $x \in \mathbb{T}$ such that

- (1) $||x|| \leq \theta$;
- (2) there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\|2^{2^{n_k}}x\| \leq 2^{-2^{p_k}} + 2^{-2^{n_k}}$ for all $k \in \mathbb{N}$, and $\|2^{2^n}x\| \leq 2^{-2^n}$ for all $n \notin \mathbb{N}$ $\{n_k: k \in \mathbb{N}\};$
- (3) there exists an increasing sequence $\{j_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\|m_{j_k}x + a_{j_k}\| \ge 2^{-2^{p_k}} - \varepsilon_k \text{ for all } k \in \mathbb{N}.$

Proof. We will define sequences $\{n_k\}_{k\in\mathbb{N}}, \{j_k\}_{k\in\mathbb{N}}, \{q_k\}_{k\in\mathbb{N}}$, and $\{s_k\}_{k\in\mathbb{N}}$ by induction. Fix $k \in \mathbb{N}$ and suppose that n_i, j_i, q_i, s_i are defined for all i < k. Find $r \ge 2$ such that

- (a) $2^{-r2^{p_k}} \le 2^{-k-1}\theta;$
- (b) $r2^{p_k} > 2^{n_{k-1}+1}$ if $k \ge 1$; (c) $2^{-r2^{p_k}} \le 2^{i-k}2^{-2^{n_i+1}}$ for all i < k;
- (d) $2^{-r2^{p_k}} \leq 2^{i-k} \varepsilon_i / m_{j_i}$ for all i < k.

Let $l \in \mathbb{N}$ be such that $l > j_{k-1}$ if $k \ge 1$, and $\alpha(m_j) \ge q_{k-1}2^{p_{k-1}}$ for all $j \ge l$. By Lemma 8 there exist $j_k \ge l$, $q_k \ge r$, and $s_k \in \{-1, 1\}$ such that

(e)
$$\left\| m_{j_k} s_k 2^{-q_k 2^{-p_k}} + a_{j_k} \right\| \ge 2^{-2^{p_k}}.$$

Put $n_k = \max\{i : 2^i < q_k 2^{p_k}\}.$ Let $x = \sum_{k \in \mathbb{N}} s_k 2^{-q_k 2^{p_k}}$. By (a), $|x| \le \sum_{k \in \mathbb{N}} 2^{-q_k 2^{p_k}} \le \sum_{k \in \mathbb{N}} 2^{-k-1} \theta = \theta$, and thus (1) holds.

To show (2), fix $k \in \mathbb{N}$. If $k \ge 1$ then by (b), $q_k 2^{p_k} > 2^{n_{k-1}+1}$. Thus $n_k > n_{k-1}$ and hence $q_i 2^{p_i} < 2^{n_k}$ for all i < k. Since $q_k \ge 2$, we have $2^{n_k+1} \ge q_k 2^{p_k} \ge 2^{p_k+1}$ and thus $n_k \ge p_k$. Hence 2^{n_k} is a multiple of 2^{p_k} and we have $q_k 2^{p_k} \ge 2^{n_k} + 2^{p_k}$. Using (c) we obtain that

(f)
$$\sum_{i \ge k} 2^{-q_i 2^{p_i}} \le 2^{-q_k 2^{p_k}} + \sum_{i > k} 2^{k-i} 2^{-2^{n_k+1}} \le 2^{-2^{n_k} - 2^{p_k}} + 2^{-2^{n_k} + 1} = 2^{-2^{n_k}} \left(2^{-2^{p_k}} + 2^{-2^{n_k}} \right).$$

Hence $\|2^{2^{n_k}}x\| \leq 2^{2^{n_k}}\sum_{i\geq k} 2^{-q_i2^{p_i}} \leq 2^{-2^{p_k}} + 2^{-2^{n_k}}$, and thus the first part of (2) holds. To show the latter one, let $n \notin \{n_k : k \in \mathbb{N}\}$ and put $k = \min\{i : n_i > n\}$. Then for all i < k we have $n > n_i$ and thus $q_i 2^{p_i} \leq 2^n$. Hence by (f),

$$\left\|2^{2^n}x\right\| \le 2^{2^n} \sum_{i\ge k} 2^{-q_i2^{p_i}} \le 2^{2^n-2^{n_k}} \left(2^{-2^{p_k}}+2^{-2^{n_k}}\right) \le 2^{2^n-2^{n+1}} = 2^{-2^n}.$$

To show (3), fix again $k \in \mathbb{N}$. From the choice of l it follows that $j_k > j_{k-1}$ if $k \ge 1$, and $\alpha(m_{j_k}) \ge q_i 2^{p_i}$ for all i < k. Hence by (e) and (d),

$$\|m_{j_k}x + a_{j_k}\| \ge \left\|m_{j_k}s_k 2^{-q_k 2^{p_k}} + a_{j_k}\right\| - m_{j_k}\sum_{i>k} 2^{-q_i 2^{p_i}}$$
$$\ge 2^{-2^{p_k}} - m_{j_k}\sum_{i>k} 2^{k-i}\varepsilon_k / m_{j_k} = 2^{-2^{p_k}} - \varepsilon_k.$$

For $n \in \mathbb{N}$, denote $\phi(n) = \sum_{k \ge n} 2^{-2^k}$, $\psi(0) = 1$, and $\psi(n) = 2^{-2^n} \sum_{k < n} 2^{2^k}$ if $n \ge 1$. It can be easily shown that both $\{\phi(n)\}_{n \in \mathbb{N}}$ and $\{\psi(n)\}_{n \in \mathbb{N}}$ are decreasing and converging to 0.

Proposition 10. For every c > 0 there exists $X \subseteq \mathbb{T}$ such that

- (1) there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\sum_{k\in\mathbb{N}} \|n_k x\| \leq c$ for all $x \in X$;
- (2) for every increasing sequence $\{m_j\}_{j\in\mathbb{N}}$ of natural numbers, every sequence $\{a_j\}_{j\in\mathbb{N}}$ of elements of \mathbb{T} , and for every $\eta > 0$ there exists $x \in X$ such that $\sum_{j\in\mathbb{N}} \|m_j x + a_j\| > c \eta$.

Proof. Put $X = \{x \in \mathbb{T} : \sum_{n \in \mathbb{N}} : ||2^{2^n}x|| \le c\}$. Clearly X satisfies the condition (1).

To show (2), fix $\eta > 0$ and sequences $\{m_j\}_{j \in \mathbb{N}}, \{a_j\}_{j \in \mathbb{N}}$. We will find $x \in X$ such that $\sum_{j \in \mathbb{N}} ||m_j x + a_j|| > c - \eta$. We will consider two cases.

(a) If $\lim_{j\to\infty} \alpha(m_j) = \infty$ then we can find $N \in \mathbb{N}$, a sequence $\{p_k\}_{k\in\mathbb{N}}$ of positive integers and a sequence $\{\varepsilon_k\}_{k\in\mathbb{N}}$ of positive reals such that $\sum_{k\in\mathbb{N}} 2^{-2^{p_k}} - \sum_{k\in\mathbb{N}} \varepsilon_k > c - \eta$ and $\sum_{k\in\mathbb{N}} 2^{-2^{p_k}} + \phi(N) + \psi(N) \leq c$. Put $\theta = 2^{-2^N}$. There exists $x \in \mathbb{T}$ satisfying the conditions (1)–(3) of Lemma 9. We have

$$\sum_{n \in \mathbb{N}} \left\| 2^{2^n} x \right\| = \sum_{n < N} \left\| 2^{2^n} x \right\| + \sum_{n \ge N} \left\| 2^{2^n} x \right\| \le \sum_{n < N} 2^{2^n} \theta + \sum_{k \in \mathbb{N}} 2^{-2^{p_k}} + \sum_{n \ge N} 2^{-2^n} \le c$$
and
$$\sum_{n < N} \left\| m_n x + q_n \right\| \ge \sum_{n < N} \left\| m_n x + q_n \right\| \ge \sum_{n < N} \left(2^{-2^{p_k}} - q_n \right) \ge q_n x$$

$$\sum_{j \in \mathbb{N}} \|m_j x + a_j\| \ge \sum_{k \in \mathbb{N}} \|m_{j_k} x + a_{j_k}\| \ge \sum_{k \in \mathbb{N}} \left(2^{-2^{p_k}} - \varepsilon_k\right) > c - \eta$$

(b) If the sequence $\{\alpha(m_j)\}_{j\in\mathbb{N}}$ does not tend to infinity then we will find $x \in X$ such that the sequence $\{\|m_j x + a_j\|\}_{j\in\mathbb{N}}$ does not tend to 0. We can suppose that $\lim_{j\to\infty} \|a_j\| = 0$ (otherwise take x = 0). There exist $M \in \mathbb{N}$ and an increasing

sequence $\{j_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\alpha(m_{j_k}) = M$ for all k. Find $N \in \mathbb{N}$ such that $2^N > M$ and $\psi(N) \leq c$. For $x = 2^{-2^N}$ we get

$$\sum_{n \in \mathbb{N}} \left\| 2^{2^n} x \right\| = \sum_{n < N} 2^{2^n - 2^N} = \psi(N) \le c.$$

Since $||m_{j_k}x + a_{j_k}|| \ge ||m_{j_k}x|| - ||a_{j_k}|| \ge 2^{M-2^N} - ||a_{j_k}||$ for all $k \in \mathbb{N}$, the sequence $\{||m_jx + a_j||\}_{j\in\mathbb{N}}$ does not converge to 0.

Proposition 11. For every c > 0 there exists $X \subseteq \mathbb{T}$ such that

- (1) for every $\eta > 0$ there exists an increasing sequence of natural numbers $\{n_k\}_{k\in\mathbb{N}}$ such that $\sum_{k\in\mathbb{N}} \|n_k x\| < c + \eta$ for all $x \in X$;
- (2) for every increasing sequence $\{m_j\}_{j\in\mathbb{N}}$ of natural numbers and for every sequence $\{a_j\}_{j\in\mathbb{N}}$ of elements of \mathbb{T} there exists $x \in X$ such that $\sum_{j\in\mathbb{N}} \|m_j x + a_j\| \ge c$.

Proof. Put

$$X = \left\{ x \in \mathbb{T} : \sum_{n \ge N} \left\| 2^{2^n} x \right\| \le c + \phi(N) + \psi(N) \text{ for all } N \in \mathbb{N} \right\}$$

Clearly X satisfies the condition (1).

To show (2), fix sequences $\{m_j\}_{j\in\mathbb{N}}, \{a_j\}_{j\in\mathbb{N}}$. We will find $x \in X$ such that $\sum_{j\in\mathbb{N}} ||m_j x + a_j|| \ge c$. Again let us discuss two cases.

(a) Assume that $\lim_{j\to\infty} \alpha(m_j) = \infty$. Let us choose a sequence $\{p_k\}_{k\in\mathbb{N}}$ of positive integers such that $\sum_{k\in\mathbb{N}} 2^{-2^{p_k}} = c$. Find $t\in\mathbb{N}$ such that $\left\|m_02^{-2^t} + a_0\right\| > 0$ and put $\theta = \left\|m_02^{-2^t} + a_0\right\|/2$. Fix a sequence $\{\varepsilon_k\}_{k\in\mathbb{N}}$ of positive reals such that $\sum_{k\in\mathbb{N}} \varepsilon_k = \theta$ and find $l\in\mathbb{N}$ such that $\alpha(m_j) \geq 2^t$ for all $j\geq l$. By Lemma 9 there exists $x'\in\mathbb{T}$ such that

- (1') $||x'|| \le \theta/m_0;$
- (2) there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\|2^{2^{n_k}}x'\| \leq 2^{-2^{p_k}} + 2^{-2^{n_k}}$ for all $k \in \mathbb{N}$, and $\|2^{2^n}x'\| \leq 2^{-2^n}$ for all $n \notin \{n_k : k \in \mathbb{N}\};$
- (3') there exists an increasing sequence $\{j_k\}_{k\in\mathbb{N}}$ of natural numbers such that $j_k \ge l$ and $||m_{j_k}x' + a_{j_k}|| \ge 2^{-2^{p_k}} \varepsilon_k$ for all $k \in \mathbb{N}$.

Put $x = x' + 2^{-2^t}$. Then for every $N \in \mathbb{N}$ we have

$$\begin{split} \sum_{n \ge N} \left\| 2^{2^n} x \right\| &\leq \sum_{n \ge N} \left\| 2^{2^n} x' \right\| + \sum_{n \ge N} \left\| 2^{2^n - 2^t} \right\| \\ &\leq \sum_{k \in \mathbb{N}} 2^{-2^{p_k}} + \sum_{n \ge N} 2^{-2^n} + \sum_{N \le n < t} 2^{2^n - 2^t} \le c + \phi(N) + \psi(N), \end{split}$$

since the last sum equals 0 if $t \leq N$ and is not greater than $\psi(t) < \psi(N)$ if t > N. Moreover,

$$\sum_{j\in\mathbb{N}} \|m_j x + a_j\| \ge \|m_0 x + a_0\| + \sum_{k\in\mathbb{N}} \|m_{j_k} x + a_{j_k}\|$$
$$\ge \left\|m_0 2^{-2^t} + a_0\right\| - \|m_0 x'\| + \sum_{k\in\mathbb{N}} \|m_{j_k} x' + a_{j_k}\|$$
$$\ge \theta + \sum_{k\in\mathbb{N}} 2^{-2^{p_k}} - \sum_{k\in\mathbb{N}} \varepsilon_k = c.$$

PETER ELIAŠ

(b) If the sequence $\{\alpha(m_j)\}_{j\in\mathbb{N}}$ does not tend to infinity then similarly as in the proof of Proposition 10 there exists $x \in \mathbb{T}$ such that $\sum_{n\in\mathbb{N}} ||2^{2^n}x|| \leq c$ and the sequence $\{||m_jx + a_j||\}_{j\in\mathbb{N}}$ does not tend to 0.

The following theorem summarizes our results concerning the hierarchy of the families \mathcal{B}_0^c and \mathcal{B}_0^{*c} .

Theorem 12. Let c be a positive real. Then

$$\bigcup_{l < c} \mathcal{B}_0^d = \bigcup_{d < c} \mathcal{B}_0^{*d} \subsetneqq \mathcal{B}_0^c \subseteq \mathcal{B}_0^{*c} \subsetneqq \bigcap_{d > c} \mathcal{B}_0^d = \bigcap_{d > c} \mathcal{B}_0^{*d}.$$

Corollary 13. If c < d then $\mathcal{B}_0^c \subseteq \mathcal{B}_0^d$ and $\mathcal{B}_0^{*c} \subseteq \mathcal{B}_0^{*d}$.

Let us note that the proofs of Propositions 10 and 11 can be easily adopted for showing the following statements.

Proposition 14. For every c > 0 there exists $X \subseteq \mathbb{T}$ such that

- (1) there exists an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of natural numbers such that $\sum_{k\in\mathbb{N}} |\sin \pi n_k x| \leq c$ for all $x \in X$;
- (2) For every increasing sequence $\{m_j\}_{j\in\mathbb{N}}$ of natural numbers, every sequence $\{a_j\}_{j\in\mathbb{N}}$ of elements of \mathbb{T} , and for every $\eta > 0$ there exists $x \in X$ such that $\sum_{j\in\mathbb{N}} |\sin \pi(m_j x + a_j)| > c \eta$.

Proposition 15. For every c > 0 there exists $X \subseteq \mathbb{T}$ such that

- (1) for every $\eta > 0$ there exists an increasing sequence of natural numbers $\{n_k\}_{k\in\mathbb{N}}$ such that $\sum_{k\in\mathbb{N}} |\sin \pi n_k x| < c + \eta$ for all $x \in X$;
- (2) for every increasing sequence $\{m_j\}_{j\in\mathbb{N}}$ of natural numbers and for every sequence $\{a_j\}_{j\in\mathbb{N}}$ of elements of \mathbb{T} there exists $x \in X$ such that $\sum_{i\in\mathbb{N}} |\sin \pi(m_j x + a_j)| \ge c.$

Hence it is possible to prove results analogous to Theorem 12 and Corollary 13, concerning the families of sets obtained by replacing the expression $\sum_{k \in \mathbb{N}} ||n_k x||$ in Definition 5 by $\sum_{k \in \mathbb{N}} |\sin \pi n_k x|$.

References

- J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253–317.
- [2] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994/95), 454–509.
- [3] P. Eliaš, A classification of trigonometrical thin sets and their interrelations, Proc. Amer. Math. Soc. 125 (1997), 1111–1121.

MATHEMATICAL INSTITUTE, SLOVAK ACADEMY OF SCIENCES, JESENNÁ 5, 041 54 KOŠICE, SLOVAKIA

E-mail address: elias@@kosice.upjs.sk