
ARBAULT PERMITTED SETS ARE PERFECTLY MEAGER

PETER ELIAŠ

Abstract. We prove that every set permitted for the family of Arbault sets
is perfectly meager. This negatively answers a question whether the existence
of permitted sets of cardinality continuum is provable in ZFC.

A set X ⊆ R is called an Arbault set if there exists an increasing sequence of
natural numbers {nk}k∈N such that for all x ∈ X,

lim
k→∞

sinπnkx = 0.

J. Arbault studied sets of this kind in his paper [1]. It is well known (see e.g. [2])
that these sets are meager and have Lebesgue measure zero. From the definition
it immediately follows that Arbault sets are closed under taking subsets. However,
they do not form an ideal since the union of two Arbault sets need not to be an
Arbault set. It was proved by N. N. Kholshchevnikova that the union of an Arbault
set and a countable set is an Arbault set, see [2].

Let A denote the family of all Arbault sets. We say that a set X is permitted for
the family A (or Arbault permitted, A-permitted) if for every Y ∈ A, X ∪ Y ∈ A.

In [2] it was proved that every γ-set of reals is A-permitted. By [6], if p = c
then there exists a γ-set of size c. Hence is consistent with ZFC that there exists
an A-permitted set having cardinality of continuum. Some improvements of these
results were proved in [9]. However, it was not known whether the existence of A-
permitted sets of size c is provable in ZFC. In this paper we show that the answer
is negative.

We will prove that every set permitted for the family A is perfectly meager. A
subset X of a topological space is perfectly meager if for every perfect set P , X is
meager in the relative topology of P . It is known (see e.g. [8]) that in ZFC there
always exists a perfectly meager set of size ℵ1, and that it is consistent with ZFC
that ℵ1 < c and every perfectly meager set has cardinality less or equal ℵ1.

1. A-permitted sets

We will need some notations. Let ‖x‖ denote the distance of a real x to the
nearest integer, i.e. ‖x‖ = min{|x− k| : k ∈ Z}. Clearly the sequence {sinπnkx}k∈N
converges to 0 if and only if the sequence {‖nkx‖}k∈N does. Also ‖−x‖ = ‖x‖ and
‖x‖ − ‖y‖ ≤ ‖x + y‖ ≤ ‖x‖+ ‖y‖ , for all x, y ∈ R.

For a ∈ NN, denote

A(a) =
{

x : lim
n→∞

‖a(n)x‖ = 0
}

.
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Put Seq = {a ∈ NN : a is increasing ∧ a(0) = 1}, and

S =
{

a ∈ Seq : lim
n→∞

a(n)
a(n + 1)

= 0
}

.

It is easy to see that the family {A(a) : a ∈ S} is a base of A, i.e. for every X ∈ A
there exists a ∈ S such that X ⊆ A(a). It was proved in [4] that if a ∈ S then the
set A(a) intersects any nonempty open set in a set of the cardinality c.

The following notion was introduced in [5]. For a ∈ Seq, m ∈ Z, and z ∈ ZN we
say that z is a good expansion of m by a, if

m =
∑

n∈N
z(n)a(n) and for all n ∈ N,

∣∣∣∑j<n z(j)a(j)
∣∣∣ ≤ a(n)

2
.

Clearly if z ∈ ZN is a good expansion then the set {n ∈ N : z(n) 6= 0} is finite. The
following two theorems were proved in [5]. We repeat the proofs of both theorems
in the next section of this paper, now with more details and some corrections made.

Theorem 1.1. For all a ∈ Seq and every m ∈ Z, there exists a good expansion of
m by a.

Theorem 1.2. Let a, b ∈ S. For all k ∈ N, let zk ∈ ZN be a good expansion of b(k)
by a. Then A(a) ⊆ A(b) if and only if

(1) ∀n ∈ N ∀∞k ∈ N zk(n) = 0, and
(2) ∃m ∈ N ∀k ∈ N ∑

n∈N |zk(n)| ≤ m.

Let us note that a special case of Theorem 1.2 for a(n) = 22n

was proved by J.
Arbault in [1].

For a, b ∈ S, let a ≺ b if and only if the conditions (1) and (2) from the previous
theorem hold true. We obtain the following characterization of A-permitted sets.

Theorem 1.3. A set X ⊆ R is permitted for the family A if and only if for every
a ∈ S there exists b ∈ S such that a ≺ b and X ⊆ A(b).

Proof. If a ∈ S and X is A-permitted then X∪A(a) ∈ A, and hence X∪A(a) ⊆ A(b)
for some b ∈ S. It follows that X ⊆ A(b) and a ≺ b. ¤

The next result of harmonic analysis is known as Kronecker’s theorem. For a
proof see e.g. [3] or [7].

Theorem 1.4. Let x1, . . . , xn ∈ R be linearly independent over Q, i.e. if q1x1+· · ·+
qnxn = 0 for some rational q1, . . . , qn, then q1 = · · · = qn = 0. Let y1, . . . , yn ∈ R
and ε > 0. Then there exist infinitely many natural numbers m such that for all i,
‖mxi − yi‖ < ε.

Our main tool is the following lemma.

Lemma 1.5. For every perfect set P ⊆ R there exists a ∈ S such that for all b ∈ S,
if a ≺ b then the set

Q =
{

x ∈ P : lim sup
k→∞

‖b(k)x‖ =
1
2

}

is dense in P .
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Proof. Let P be a perfect set. We use a fact that any open set containing an
element of P contains uncountably many elements of P .

Let {Hn}n∈N be a sequence of open intervals such that limn→∞ diam(Hn) = 0,
P ⊆ ⋂

m∈N
⋃

n≥m Hn, and for all n ∈ N, P ∩Hn 6= ∅. Such sequence can be selected
from a base of topology on R consisting from open intervals. Fix a non-increasing
sequence of positive reals {εn}n∈N converging to 0. By an induction on n, we will
define a ∈ S and a sequence {In}n∈N of finite families of open intervals such that
for all n,

(i) Hn ∈ In,
(ii) for all I ∈ In, P ∩ I 6= ∅,
(iii) for every I ∈ In there exists J ∈ In+1 such that J ⊆ I and for all x ∈ J ,

‖a(n + 1)x‖ ≤ εn

n + 1
,

(iv) for every I ∈ In and for every i ∈ {1, . . . , n+1} there exists J ∈ In+1 such

that J ⊆ I and for all x ∈ J , ‖ia(n + 1)x‖ ≥ 1
2
− εn

n + 1
.

Put a(0) = 1 and I0 = {H0}. If a(n) and In are already defined, then for every
I ∈ In and every i ∈ {0, . . . , n + 1} let us select a point xI

i ∈ P ∩ I in such a way
that the set {

xI
i : I ∈ In ∧ i ∈ {0, . . . , n + 1}}

will be linearly independent on Q. This is possible since the vector space over Q
generated by a finite set is countable, while P ∩ I is uncountable for every I ∈ In.
By Theorem 1.4, there exists a(n + 1) such that a(n)/a(n + 1) ≤ 1/(n + 1) and for
all I ∈ In and i ∈ {1, . . . , n + 1},

∥∥a(n + 1)xI
0

∥∥ ≤ εn

2(n + 1)
and

∥∥∥∥ia(n + 1)xI
i −

1
2

∥∥∥∥ ≤
εn

2(n + 1)
.

Let δ > 0 be such that a(n+1)δ ≤ εn/2(n+1)2 and for all I ∈ In, δ < diam(I).
For every I ∈ In and i ∈ {0, . . . , n + 1}, let JI

i ⊆ I be an open interval such that
diam(JI

i ) = δ and xI
i ∈ JI

i . Then for all x ∈ JI
0 we have

‖a(n + 1)x‖ ≤ ∥∥a(n + 1)xI
0

∥∥ + a(n + 1)δ ≤ εn

2(n + 1)
+

εn

2(n + 1)2
≤ εn

n + 1
,

and for all i ∈ {1, . . . , n + 1} and x ∈ JI
i ,

‖ia(n + 1)x‖ ≥
∥∥ia(n + 1)xI

i

∥∥− ia(n+1)δ ≥ 1
2
− εn

2(n + 1)
− εn

2(n + 1)
=

1
2
− εn

n + 1
.

Put In+1 = {Hn+1} ∪
{
JI

i : I ∈ In ∧ i ∈ {0, . . . , n + 1}} . We proceed this way
for all n ∈ N. We clearly obtain a ∈ S.

Let b ∈ S be such that a ≺ b. For all k ∈ N, let zk ∈ ZN be a good expansion of
b(k) by a. By Theorem 1.2, there exists m ∈ N such that for all k,

∑
n∈N |zk(n)| ≤

m. We denote supp zk = {n ∈ N : zk(n) 6= 0}.
To prove that Q is dense in P , let us take an open interval I such that P ∩I 6= ∅.

We need to show that Q ∩ I 6= ∅.
Let us define sequences {nj}j∈N, {kj}j∈N, and {Jn}n≥n0 as follows. Find n0

such that n0 ≥ m and cl(Hn0) ⊆ I. Put Jn0 = Hn0 .
Having defined nj and Jnj ∈ Inj , find kj such that min supp zkj > nj and put

nj+1 = max supp zkj
. For all n such that nj < n < nj+1, let us find Jn ∈ In such
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that Jn ⊆ Jn−1 and for all x ∈ Jn,

‖a(n)x‖ ≤ εn

n + 1
≤ εnj

m

Finally, for n = nj+1 let us find Jn ∈ In such that Jn ⊆ Jn−1 and for all x ∈ Jn,
∥∥zkj

(n)a(n)x
∥∥ ≥ 1

2
− εn

n + 1
≥ 1

2
− εnj

m
.

Since

b(kj) =
∑

nj<n≤nj+1

zkj(n)a(n) and
∑

nj<n<nj+1

∣∣zkj(n)
∣∣ ≤ m− 1,

we obtain that for all x ∈ Jnj+1 , and thus also for all x ∈ cl(Jnj+1),

‖b(kj)x‖ ≥
∥∥zkj(nj+1)a(nj+1)x

∥∥−
∑

nj<n<nj+1

∣∣zkj(n)
∣∣ ‖a(n)x‖ ≥ 1

2
− εnj

.

We can see that if x ∈ ⋂
n≥n0

cl(Jn) then x ∈ Q ∩ I. ¤

We are now ready to prove the main result of this paper.

Theorem 1.6. Let X be permitted for the family A. Then X is perfectly meager.

Proof. Let P be a perfect set. We will show that X is meager in P , i.e. that X is
a countable union of sets which are nowhere dense in P .

By Lemma 1.5 there exists a ∈ S such that if b ∈ S and a ≺ b then the set

Q =
{

x ∈ P : lim sup
k→∞

‖b(k)x‖ =
1
2

}
is dense in P . Since X is A-permitted, by

Theorem 1.3 there exists such b ∈ S satisfying a ≺ b and X ⊆ A(b).
For n ∈ N, denote Xn = {x ∈ R : ∀k ≥ n ‖b(k)x‖ ≤ 1/4}. Clearly every Xn is

closed and X ⊆ ⋃
n∈NXn. It suffices to show that Xn is nowhere dense in P , for

every n.
Let n ∈ N and let G be an open set such that G ∩ P 6= ∅. Then there exists

x ∈ Q∩G. We have x /∈ Xn and since Xn is closed, there exists an open set H ⊆ G
such that x ∈ H and H ∩Xn = ∅. Hence Xn is nowhere dense in P . ¤

2. Proof of Theorems 1.1 and 1.2

Theorem 1.1 was proved in [5] as Lemma 2. We repeat the proof here for the
completeness.

Proof of Theorem 1.1. Let a ∈ S and m ∈ Z. We find a good expansion z ∈ ZN of
m by a as follows. Find some k ∈ N such that |m| ≤ a(k)/2 and put z(n) = 0 for
all n > k. For n ≤ k, z(n) will be defined by induction on n going from k to 0.

Put mk+1 = m. For n ≤ k, let z(n) be the nearest integer to mn+1/a(n). Put
mn = mn+1 − z(n)a(n). Since a(0) = 1, we obtain m0 = 0, and thus for all n ≤ k,
mn+1 =

∑
j≤n z(j)a(j). It follows that z is an expansion of m by a.

For n ≤ k we have |mn+1/a(n)− z(n)| ≤ 1/2, and hence
∣∣∣∑j<n z(j)a(j)

∣∣∣ = |mn+1 − z(n)a(n)| ≤ a(n)
2

.

Since a is increasing, for n > k we obtain
∣∣∣∑j<n z(j)a(j)

∣∣∣ = |m| ≤ a(k)
2

<
a(n)

2
.
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Hence z is a good expansion. ¤
Here we provide a corrected version of the proof of Theorem 1.2, proved in [5]

as Theorem 4. The proof is now rearranged, one part of the proof was completely
rewritten. One direction of the proof is easy.

Lemma 2.1. Let a ∈ S, b ∈ Seq, and for all k ∈ Z, let zk ∈ ZN be a good expansion
of b(k) by a. Assume that

(1) ∀n ∈ N ∀∞k ∈ N zk(n) = 0, and
(2) ∃m ∈ N ∀k ∈ N ∑

n∈N |zk(n)| ≤ m.

Then A(a) ⊆ A(b).

Proof. Let m > 0 be such that for all k,
∑

n∈N |zk(n)| ≤ m. If x ∈ A(a) and if
ε > 0 is given, then there exists n0 such that for all n ≥ n0, ‖a(n)x‖ ≤ ε/m. There
exists k0 such that for all n < n0 and k ≥ k0, zk(n) = 0. For all k ≥ k0 we have

‖b(k)x‖ ≤
∑

n∈N
|zk(n)| ‖a(n)x‖ ≤ ε

m

∑

n∈N
|zk(n)| ≤ ε,

hence x ∈ A(b). ¤
The proof of the other direction splits into several lemmas.

Lemma 2.2. If z is a good expansion by a, then

|z(n)| ≤ 1
2

(
1 +

a(n + 1)
a(n)

)

for all n ∈ N.

Proof. For n ∈ N, we have

|z(n)a(n)| ≤
∣∣∣∑j<n z(j)a(j)

∣∣∣ +
∣∣∣∑j≤n z(j)a(j)

∣∣∣ ≤ a(n)
2

+
a(n + 1)

2
,

hence

|z(n)| ≤ a(n)−1

(
a(n)

2
+

a(n + 1)
2

)
=

1
2

(
1 +

a(n + 1)
a(n)

)
.

¤
By an interval we will mean a closed and bounded interval on the real line having

a nonempty interior.

Lemma 2.3. Let a ∈ Seq, n ∈ N, and let a(n)/a(n + 1) ≤ 1/4. Then for every
interval I such that diam(I) = 4/(3a(n)) there exists an interval J ⊆ I such that
diam(J) = 4/(3a(n + 1)) and for all x ∈ J ,

‖a(n)x‖ ≤ 2a(n)
3a(n + 1)

.

Proof. Take an interval I ′ of the length 1/a(n) having the same center as the
interval I, and find x0 ∈ I ′ such that ‖a(n)x0‖ = 0. Let J be an interval of the
length 4/(3a(n + 1)) with the center x0. For all x ∈ J we obtain

|x− x0| ≤ 2
3a(n + 1)

≤ 1
6a(n)

=
diam(I)− diam(I ′)

2
,

hence x ∈ I and ‖a(n)x‖ ≤ a(n) |x− x0| ≤ 2a(n)
3a(n + 1)

. ¤
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Lemma 2.4. Let a ∈ Seq, and let n ∈ N be such that a(n)/a(n + 1) ≤ 1/4. Let
z ∈ ZN be a good expansion by a such that |z(n)| ≥ 2. Then for every interval I
such that diam(I) = 4/(3a(n)) there exists an interval J ⊆ I such that diam(J) =
4/(3a(n + 1)) and for all x ∈ J ,

‖a(n)x‖ ≤ 2a(n)
3a(n + 1)

+
1

|z(n)| − 1
2

and
∥∥∥∑

j≤n z(j)a(j)x
∥∥∥ ≥ 1

6
.

Proof. Take an interval I ′ of the length 1/a(n) having the same center as the
interval I, and find x0 ∈ I ′ such that ‖a(n)x0‖ = 0. Put m =

∣∣∣∑j≤n z(j)a(j)
∣∣∣.

Since z(n) ≥ 2, we have

m ≥ |z(n)| a(n)−
∣∣∣∑j<n z(j)a(j)

∣∣∣ ≥
(|z(n)| − 1

2

)
a(n) ≥ 3a(n)

2
.

We have 1/m < diam(I ′), hence there exists x1 ∈ I ′ such that ‖mx1‖ = 1/2 and
|x1 − x0| ≤ 1/m. Let J be an interval of the length 4/(3a(n + 1)) with the center
x1. For all x ∈ J we have

|x− x1| ≤ 2
3a(n + 1)

≤ 1
6a(n)

=
diam(I)− diam(I ′)

2
,

hence J ⊆ I. By the definition of a good expansion we have m ≤ a(n + 1)/2, thus
if x ∈ J then ‖mx‖ ≥ ‖mx0‖ −m |x− x1| ≥ 1/2 − 1/3 = 1/6. We obtain that for
all x ∈ J , |x− x0| ≤ |x− x1|+ |x1 − x0| ≤ 2a(n)/(3a(n + 1)) + 1/m, hence

‖a(n)x‖ ≤ a(n) |x− x0| ≤ 2a(n)
3a(n + 1)

+
1

|z(n)| − 1
2

.

¤

Lemma 2.5. Let a ∈ Seq, and let n ∈ N be such that a(n)/a(n + 1) ≤ 1/8. Let
z ∈ ZN be a good expansion by a. If I is an interval such that diam(I) = 4/(3a(n))
and for all x ∈ I,

∥∥∥∑
j<n z(j)a(j)x

∥∥∥ ≥ 1/6, then there exists an interval J ⊆ I

such that diam(J) = 4/(3a(n + 1)) and for all x ∈ J ,

‖a(n)x‖ ≤ 4a(n)
3a(n + 1)

and
∥∥∥∑

j≤n z(j)a(j)x
∥∥∥ ≥ 1

6
.

Proof. Take an interval I ′ of the length 1/a(n) having the same center as the
interval I, and find x0 ∈ I ′ such that ‖a(n)x0‖ = 0. Put m =

∣∣∣∑j≤n z(j)a(j)
∣∣∣.

Since
∥∥∥∑

j<n z(j)a(j)x0

∥∥∥ ≥ 1/6 and ‖a(n)x0‖ = 0, we have ‖mx0‖ ≥ 1/6. Denote
J ′ the longest interval containing x0 on which the condition ‖mx‖ ≥ 1/6 is satisfied.
By the definition of a good expansion, we have m ≤ a(n + 1)/2, hence diam(J ′) =
2/(3m) ≥ 4/(3a(n + 1)). Let J be an interval of the length 4/(3a(n + 1)) such that
J ⊆ J ′ and x0 ∈ J . For all x ∈ J we obtain

|x− x0| ≤ 4
3a(n + 1)

≤ 1
6a(n)

=
diam(I)− diam(I ′)

2
,

hence x ∈ I and ‖a(n)x‖ ≤ a(n) |x− x0| ≤ 4a(n)
3a(n + 1)

. ¤
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Lemma 2.6. Let a ∈ S, b ∈ Seq, and for all k ∈ N, let zk ∈ ZN be a good expansion
of b(k) by a. Assume that the set {|zk(n)| : k, n ∈ N} is unbounded. Then there
exists x ∈ A(a) such that x /∈ A(b).

Proof. We will find increasing sequences of natural numbers {ni}i∈N, {ki}i∈N such
that

(i) for all n ≥ n0, a(n)/a(n + 1) ≤ 1/8,
(ii) for all i ∈ N, |zki(ni)| ≥ 2,
(iii) limi→∞ |zki

(ni)| = ∞,
(iv) for all i ∈ N and for all n ≥ ni+1, zki

(n) = 0.

The sequences {ni}i∈N, {ki}i∈N can be defined by induction as folows. Let m0 ∈ N
be such that for all n ≥ m0, a(n)/a(n + 1) ≤ 1/8. Since by Lemma 2.2, the
set {|zk(n)| : k ∈ N} is bounded for every n ∈ N, there exist n0 and k0 such that
n0 ≥ m0 and |zk0(n0)| ≥ 2. If ni and ki are already defined, find mi+1 such that for
all n ≥ mi+1, zki(n) = 0. Again, there exist ni+1 and ki+1 such that ni+1 ≥ mi+1,
ki+1 > ki, and

∣∣zki+1(ni+1)
∣∣ > |zki(ni)|. It can be easily checked that the sequences

{ni}i∈N and {ki}i∈N are increasing and the conditions (i)–(iv) are satisfied.
Let us now define a sequence of intervals {In}n≥n0 . We start with an arbitrary

interval In0 such that diam (In0) = 4/(3a(n0)).
For n ≥ n0, let In be an interval of the length 4/(3a(n)). If n = ni for some i

then by Lemma 2.4 there exists an interval In+1 ⊆ In of the length 4/(3a(n + 1))
such that for all x ∈ In+1,

‖a(n)x‖ ≤ 2a(n)
3a(n + 1)

+
1

|zki(ni)| − 1
2

and
∥∥∥∑

j≤n zki(j)a(j)x
∥∥∥ ≥ 1

6
.

Otherwise, ni < n < ni+1 for some i, and we have
∥∥∥∑

j<n zki(j)a(j)x
∥∥∥ ≥ 1/6 for all

x ∈ In. By Lemma 2.5 there exists an interval In+1 ⊆ In of the length 4/(3a(n+1))
such that for all x ∈ In+1,

‖a(n)x‖ ≤ 4a(n)
3a(n + 1)

and
∥∥∥∑

j≤n zki(j)a(j)x
∥∥∥ ≥ 1

6
.

Let x ∈ ⋂
n≥n0

In. From a ∈ S and the condition (iii) we obtain x ∈ A(a). For
all i, the condition (iv) implies that

‖b(ki)x‖ =
∥∥∥∑

j<ni+1
zki(j)a(j)x

∥∥∥ ≥ 1
6
,

hence x /∈ A(b). ¤

Lemma 2.7. Let a ∈ Seq, and let n ∈ N be such that a(n)/a(n + 1) ≤ 1/16. Let
z ∈ ZN be a good expansion by a such that z(n) 6= 0. Let c, ε be non-negative
reals, and let ε ≤ 1/24. If I is an interval such that diam(I) = 4/(3a(n)) and for
all x ∈ I,

∥∥∥∑
j<n z(j)a(j)x

∥∥∥ ≥ c, then there exists an interval J ⊆ I such that
diam(J) = 4/(3a(n + 1)) and for all x ∈ J ,

‖a(n)x‖ ≤ 4a(n)
3a(n + 1)

+ 2ε and
∥∥∥∑

j≤n z(j)a(j)
∥∥∥ ≥ min

{
1
6
, c + ε

}
.
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Proof. Let I ′, x0, and m be as in Lemma 2.5. Clearly ‖mx0‖ ≥ c. By the definition
of a good expansion we have m ≤ a(n + 1)/2. Since z(n) 6= 0, we also have

m ≥ a(n)−
∣∣∣∑j<n z(j)a(j)

∣∣∣ ≥ a(n)
2

.

We will consider two cases.
(a) Assume that for some x1, ‖mx1‖ ≥ 1/6 and |x1 − x0| ≤ ε/m. Then there

exists an interval J containing x1 such that diam(J) = 4/(3a(n + 1)) and for all
x ∈ J , ‖mx‖ ≥ 1/6. For x ∈ J we obtain

|x− x0| ≤ |x− x1|+ |x1 − x0| ≤ 4
3a(n + 1)

+
ε

m
≤ 1

6a(n)
=

diam(I)− diam(I ′)
2

.

Hence J ⊆ I.
(b) If ‖mx‖ < 1/6 for all x such that |x− x0| ≤ ε/m, then there exists x1 such

that ‖mx1‖ = ‖mx0‖ + ε and |x1 − x0| = ε/m. Similarly as in the previous case,
there exists an interval J containing x1 such that diam(J) = 4/(3a(n + 1)) and for
all x ∈ J , ‖mx‖ ≥ ‖mx1‖. Again, we obtain J ⊆ I.

In both cases we have shown that for all x ∈ J , ‖mx‖ ≥ min{1/6, c + ε} and

‖a(n)x‖ ≤ a(n) |x− x0| ≤ 4a(n)
3a(n + 1)

+ 2ε.

¤

Lemma 2.8. Let a ∈ S, b ∈ Seq, and for all k ∈ N, let zk ∈ ZN be a good expansion
of b(k) by a and sk = |{n ∈ N : zk(n) 6= 0}|. Assume that the set {sk : k ∈ N} is
unbounded. Then there exists x ∈ A(a) such that x /∈ A(b).

Proof. We will find increasing sequences {ni}i∈N, {ki}i∈N such that

(i) for all n ≥ n0, a(n)/a(n + 1) ≤ 1/16,
(ii) for all i ∈ N, ski ≥ ni + i + 4,
(iii) for all i ∈ N and for all n ≥ ni+1, zki(n) = 0.

The sequences {ni}i∈N, {ki}i∈N can be defined by induction as follows. Take n0

such that for all n ≥ n0, a(n)/a(n + 1) ≤ 1/16, and find k0 such that sk0 ≥ n0 + 4.
If ni, ki are already defined, then we can find ni+1 > ni such that for all n ≥ ni+1,
zki(n) = 0. By the assumption there exists ki+1 > ki such that ski+1 ≥ ni+1 + i+5.

For i ∈ N, let us denote mi = |{n : n ≥ ni ∧ zki(n) 6= 0}|. From (ii) it follows
that mi ≥ i+4, hence limi→∞mi = ∞. Put εi = 1/(6mi). We have mi ≥ 4, hence
εi ≤ 1/24.

Let us define a sequence of intervals {In}n≥n0 . We start with an arbitrary
interval In0 such that diam(In0) = 4/(3a(n0)).

Let n ≥ n0 and let In be an interval of the length 4/(3a(n)). Find i such that
ni ≤ n < ni+1 and put

cn = min
{∥∥∥∑

j<n zki
(j)a(j)x

∥∥∥ : x ∈ In

}
.

If zki(n) = 0 then by Lemma 2.3 there exists an initerval In+1 ⊆ In of the length
4/(3a(n+1)) such that for all x ∈ In+1, ‖a(n)x‖ ≤ 2a(n)/(3a(n+1)). Clearly also∥∥∥∑

j≤n zki(j)a(j)x
∥∥∥ =

∥∥∥∑
j<n zki(j)a(j)x

∥∥∥ ≥ cn.
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If zki(n) 6= 0 then by Lemma 2.7 there exists an interval In+1 ⊆ In of the length
4/(3a(n + 1)) such that for all x ∈ In+1,

‖a(n)x‖ ≤ 4a(n)
3a(n + 1)

+ 2εi and
∥∥∥∑

j≤n zki(j)a(j)x
∥∥∥ ≥ min

{
1
6
, cn + εi

}
.

Let x ∈ ⋂
n≥n0

In. Since a ∈ S and limi→∞ εi = 0, we have x ∈ A(a). For all
i ∈ N, the condition (iii) implies that

‖b(ki)x‖ =
∥∥∥∑

j<ni+1
zki

(j)a(j)x
∥∥∥ ≥ min

{
1
6
, miεi

}
=

1
6
,

since we have mi-times increased the value cni ≥ 0 by εi. Hence x /∈ A(b). ¤

Lemma 2.9. Let a ∈ S, b ∈ Seq, and for all k ∈ N, let zk ∈ ZN be a good expansion
of b(k) by a. Assume that there exist t ∈ N and an infinite set K ⊆ N such that
for all k ∈ K, zk(t) 6= 0, and for every n > t, the set {k ∈ K : zk(n) 6= 0} is finite.
Then there exists x ∈ A(a) such that x /∈ A(b).

Proof. By Lemma 2.2, the set {zk(n) : k ∈ N} is finite for every n ∈ N, hence
there exist integers y(0), . . . , y(t) and an infinite set L ⊆ K such that for all k ∈ L
and n ≤ t, zk(n) = y(n). Denote m =

∑
n≤t y(n)a(n). We will find increasing

sequences {ni}i∈N, {ki}i∈N such that
(i) n0 > t,
(ii) for all n ≥ n0, a(n)/a(n + 1) ≤ 1/8,
(iii) for all i ∈ N, ki ∈ L,
(iv) for all i ∈ N, zki(ni) 6= 0,
(v) for all i, n ∈ N, if t < n < ni or n ≥ ni+1 then zki(n) = 0.

The sequences {ni}i∈N, {ki}i∈N can be defined by induction as follows. Let
m0 ≥ t be such that for all n > m0, a(n)/a(n + 1) ≤ 1/8. Find an infinite set
K0 ⊆ L such that if k ∈ K0 and t < n ≤ m0 then zk(n) = 0. Let us take k0 ∈ K0

such that for some n > m0, zk0(n) 6= 0. Put n0 = min{n > m0 : zk0(n) 6= 0}.
If ni, ki, mi, and Ki are already defined, let mi+1 be such that for all n > mi+1,

zki(n) = 0. There exists an infinite set Ki+1 ⊆ Ki such that if k ∈ Ki+1 and
t < n ≤ mi+1 then zk(n) = 0. Let us take ki+1 ∈ Ki+1 such that ki+1 > ki and
zki+1(n) 6= 0 for some n > mi+1. Put ni+1 = min

{
n > mi+1 : zki+1(n) 6= 0

}
.

Since for all i, zki(ni) 6= 0 and zki(n) = 0 for all n > mi+1, we have ni ≤ mi+1,
and thus ni+1 > ni. We also have ki+1 > ki for all i, hence the sequences {ni}i∈N
and {ki}i∈N are increasing. The condition n0 > m0 ensures that (i) and (ii) are
satisfied; the conditions (iii)–(v) are ensured by the choice of Ki+1 and ni+1.

Take an interval I of the length 2/(3 |m|) such that for all x ∈ I, ‖mx‖ ≥ 1/6.
We will define a sequence of intervals {In}n∈N by induction. Since n0 ≥ t + 1 and
|m| ≤ a(t + 1)/2, there exists an interval I0 ⊆ I such that diam(I0) = 4/(3a(n0)).
For n ≥ n0, let In be an interval of the length 4/(3a(n)), and let i be such that
ni ≤ n < ni+1. If n = ni, then for all x ∈ In we have

∥∥∥∑
j<n zki(j)a(j)x

∥∥∥ = ‖mx‖ ≥ 1
6
.

By Lemma 2.5, there exists an interval In+1 ⊆ In of the length 4/(3a(n + 1)) such
that for all x ∈ In+1,

‖a(n)x‖ ≤ 4a(n)
3a(n + 1)

and
∥∥∥∑

j≤n zki(j)a(j)x
∥∥∥ ≥ 1

6
.
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We can find such interval In+1 for every n, ni ≤ n < ni+1.
Let x ∈ ⋂

n≥n0
In. Since for all n ≥ n0, ‖a(n)x‖ ≤ 4a(n)/(3a(n + 1)), we have

x ∈ A(a). We also obtain that for all i,

‖b(ki)x‖ =
∥∥∥∑

j<ni+1
zki

(j)a(j)x
∥∥∥ ≥ 1

6
,

hence x /∈ A(b). ¤

Lemma 2.10. Let a ∈ S, b ∈ Seq, and for all k ∈ N, let zk ∈ ZN be a good expansion
of b(k) by a. Assume that there exists t ∈ N such that the set {k ∈ N : zk(t) 6= 0}
is infinite, and that for every n ∈ N and every infinite set K ⊆ {k ∈ N : zk(n) 6= 0}
there exists n′ > n such that {k ∈ K : zk(n′) 6= 0} is infinite. Then there exists
x ∈ A(a) such that x /∈ A(b).

Proof. We will find increasing sequences {ni}i∈N, {ki}i∈N such that
(i) for all n ≥ n0, a(n)/a(n + 1) ≤ 1/16,
(ii) for all i, j such that i ≤ j, and for all n ≤ ni, zki

(n) = zkj
(n),

(iii) for all i and for all n such that n0 ≤ n ≤ ni, zki
(n) 6= 0 if and only if n = nj

for some j ≤ i.
The sequences {ni}i∈N, {ki}i∈N can be defined by induction as follows. By the

assumption, there exists t ∈ N such that for all n ≥ t, a(n)/a(n + 1) ≤ 1/16, and
the set K = {k ∈ N : zk(t) 6= 0} is infinite. Similarly as in Lemma 2.9, there exist
integers y(0), . . . , y(t) and an infinite set L ⊆ K such that for all n ≤ t and k ∈ L,
zk(n) = y(n).

Put n0 = t and K0 = L. Let us take arbitrary k0 ∈ K0.
If we have ni, ki, and Ki defined, let ni+1 = min{n > ni : ∃∞k ∈ Ki zk(n) 6= 0}.

We can find an integer y(ni+1) 6= 0 and an infinite set Ki+1 ⊆ Ki such that for all
k ∈ Ki+1, zk(ni+1) = y(ni+1), and for all n such that ni < n < ni+1, zk(n) = 0.
Let us take ki+1 ∈ Ki+1 such that ki+1 > ki.

Clearly the sequences {ni}i∈N and {ki}i∈N are increasing. Condition (i) is en-
sured by the choice of n0, conditions (ii) and (iii) by the choice of ni+1 and Ki+1.

For k ∈ N, let us denote sk = |{n ∈ N : zk(n) 6= 0}|. The condition (iii) implies
that for all i, ski ≥ i + 1, hence the set {sk : k ∈ N} is unbounded. From Lemma
2.8 it follows that there exists x ∈ A(a) such that x /∈ A(b). ¤

It remains to prove the second direction of Theorem 1.2.

Lemma 2.11. Let a ∈ S, b ∈ Seq, and for all k ∈ N, let zk ∈ ZN be a good
expansion of b(k) by a. If A(a) ⊆ A(b) then

(1) ∀n ∈ N ∀∞k ∈ N zk(n) = 0, and
(2) ∃m ∈ N ∀k ∈ N ∑

n∈N |zk(n)| ≤ m.

Proof. Assume that the condition (1) fails. Then there exists t ∈ N such that the
set K = {n ∈ N : zk(t) 6= 0} is infinite. In the case that there exist such t and K
with an additional property that for all n > t, the set k ∈ K : zk(n) 6= 0} is finite,
Lemma 2.9 says that A(a) * A(b). On the other side, if there is no such t and K
then for every n and every infinite set K ⊆ {k : zk(n) 6= 0} there exists n′ > n such
that the set {k ∈ K : zk(n′) 6= 0} is infinite. Thus the assumptions of Lemma 2.10
are satisfied and hence A(a) * A(b). We have proved that if A(a) ⊆ A(b) then the
condition (1) holds true.
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Assume now that the condition (2) fails. There are two possibilities. Either the
set {|zk(n)| : n, k ∈ N} is unbounded, or the set {sk : k ∈ N} is unbounded, where
sk = |{n ∈ N : zk(n) 6= 0}|. In the first case, Lemma 2.6 implies that A(a) * A(b),
in the latter the same follows from Lemma 2.8. Thus if A(a) ⊆ A(b) then the
condition (2) must hold true too. ¤
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