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Background

The classical Fichtenholz-Kantorovich-Hausdorff Theorem says
that the power-set P(X ) of any infinite set X contains an
independent family I ⊂ P(X ) of cardinality |I| = |P(X )|. The
independence of I means that for any disjoint finite subsets
A,B ⊂ I the intersection (

⋂
A∈A A) ∩ (

⋂
B∈B X \ B) is not empty.
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Introduction

By an algebraic operation on a set A we understand a function
α : Anα → A defined on a finite power of the set A. The number
nα ∈ ω is called the arity of the algebraic operation α.

Let (A,A) be a universal algebra, i.e., a set A endowed with a
family of algebraic operations A.

A subset S ⊂ A is called a subalgebra of the algebra (A,A) if
α(Snα) ⊂ S for each algebraic operation α ∈ A. In this case S is a
universal algebra endowed with the family A|S = {α|Snα}α∈A of
restricted algebraic operations.
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Introduction

A function h : S → A is called a homomorphism if it preserves
algebraic operations in the sense that
h(α(x1, . . . , xnα)) = α(h(x1), . . . , h(xnα)) for any algebraic
operation α ∈ A and points x1, . . . , xnα ∈ S .

Definition

Each subset B ⊂ A is contained in the smallest subalgebra B̄ ⊂ A
called the subalgebra generated by B.
We shall say that the subalgebra B̄ is freely generated by B (or
else that the subset B is free in A) if every function f : B → A can
be extended to a homomorphism f̄ : B̄ → A.
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Definition

A family A of operations on a set A is called

unital if A contains the identity operation idA : A1 → A,
idA : (x1) 7→ x1;

stable under substitutions (briefly, substitution-stable) if for
any algebraic operation α ∈ A and a function
s : {1, . . . , nα} → {1, . . . ,m} the algebraic operation
α ◦ As : Am → A, α ◦ As : (x1, . . . , xm) 7→ α(xs(1), . . . , xs(nα)),
belongs to A;

stable under compositions if for any algebraic operations
β ∈ A and α1, . . . , αnβ ∈ A of the same arity n = nαi , i ≤ nβ,
the algebraic operation β(α1, . . . , αnβ ) : An → A,
β(α1, . . . , αnβ ) : (x1, . . . , xn) 7→
β(α1(x1, . . . , xn), . . . , αnβ (x1, . . . , xn)) belongs to A;

a clone if A is unital and stable under substitutions and
compositions.
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Main results

Let (A,A) be a universal algebra and Ā be the smallest clone
containing the operation family A.

Observation

It is standard to prove that for each subset B ⊂ A the subalgebra
B̄ generated by B coincides with the set Ā(B) =

⋃
α∈Ā α(Bnα).

This means that for each point y ∈ B̄ we can find an algebraic
operation α ∈ Ā and points x1, . . . , xnα ∈ B such that
y = α(x1, . . . , xn).
We can additionally assume that the points x1, . . . , xnα are
pairwise distinct.
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Main results

Lemma

A subset B ⊂ A of a universal algebra (A,A) is free if and only if
for any distinct algebraic operations α, β ∈ Ā of the same arity
n = nα = nβ the inequality α(x1, . . . , xn) 6= β(x1, . . . , xn) holds for
any pairwise distinct points x1, . . . , xn ∈ B.
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Main results

Theorem 1

For any universal algebra (A,A) of cardinality |A| ≥ 2 and any
infinite set X of cardinality |X | ≥ |A|, the universal algebra
(AX ,AX ) contains a free subset B ⊂ AX of cardinality |B| ≥ 2|X |.

The proof of this theorem uses the
Fichtenholz-Kantorovich-Hausdorff Theorem, which in its turns,
can be considered as a special case of our result.
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Main results

Corollary

For any infinite set X the Boolean algebra P(X ) contains an
independent subset I ⊂ P(X ) of cardinality |I| = |P(X )|.

Proof

Using characteristic functions, identify the Boolean algebra P(X )
with the X -th power 2X of a two-element Boolean algebra 2. By
Theorem 1, the Boolean algebra P(X ) contains a free subset
I ⊂ P(X ) of cardinality |I| = |P(X )|. It is easy to check that the
family I is independent.
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Main results

Remark

In light of the Fichtenholz-Kantorovich-Hausdorff Theorem it is
interesting to remark that in certain models of ZFC the smallest
cardinality i of a maximal independent subset in the Boolean
algbera P(ω) is strictly smaller than the cardinality of continuum
2ω. This fact witnesses that Theorem 1 cannot be proved by a
maximality argument using Zorn’s Lemma.
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Thank you for your attention.
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