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Introduction

Theorem (Riemann)

For any conditionally convergent series of reals
∑∞

n=1 an and any
a ∈ R there exists a permutation σ : N→ N such that∑∞

n=1 aσ(n) = a.

Theorem (Wilczyński)

For any conditionally convergent series of reals
∑∞

n=1 an and any
a ∈ R there exists a permutation σ : N→ N such that∑∞

n=1 aσ(n) = a and supp(σ) = {n ∈ N : σ(n) 6= n} ∈ Id , where

Id = {A ⊆ N : lim sup
n→∞

|A ∩ {0, 1, . . . , n − 1}|
n

= 0}.
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Introduction

Definition

We say that an ideal I ⊆ P(N) has the (R) property if for any
conditionally convergent series of reals

∑∞
n=1 an and any a ∈ R

there exists a permutation σ : N→ N such that
∑∞

n=1 aσ(n) = a
and supp(σ) ∈ I.

Theorem (Filipów, Szuca)

Let I ⊆ P(N) be an ideal. The following are equivalent.

(i) I has the (R) property.

(ii) I cannot be extended to a summable ideal.
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The Lévy-Steinitz Theorem

Definition

Let (vn)n be a sequence of vectors in Rm.
S (
∑∞

n=1 vn) = {v ∈ Rm : ∃σ : N→ N - permutation∑∞
n=1 vσ(n) = v}.

Definition

Let (vn)n be a sequence of vectors in Rm.
SI (

∑∞
n=1 vn) = {v ∈ Rm : ∃σ : N→ N - permutation∑∞

n=1 vσ(n) = v and supp(σ) ∈ I}.
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The Lévy-Steinitz Theorem

Theorem (Lévy, Steinitz)

Let (vn)n be a sequence of vectors in Rm. The set S(
∑∞

n=1 vn) is
either empty or is of the form s0 + L for some vector s0 and some
linear subspace L.

Examples

S

( ∞∑
n=1

(
(−1)n

n
,

(−1)n

n

))
= {(x , y) : x = y},

S

( ∞∑
n=1

(
(−1)n

n
,

(−1)n√
n

))
= R2.
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The Lévy-Steinitz Theorem

The form of the space s0 + L in the Lévy-Steinitz theorem can be
expressed in a more precise way.

Let F = {w ∈ Rm :
∑∞

n=1(w ◦ vn)+ <∞}, where ◦ denotes the
real inner product and a+ = max{a, 0}.
Let F⊥ = {v ∈ Rm : ∀w ∈ F v ◦ w = 0}.
Also let s0 be any sum (rearranged or not) of the series.
Finally, if S(

∑∞
n=1 vn) is not empty, then

S

( ∞∑
n=1

vn

)
= s0 + F⊥.
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The two-dimensional case, ideal version

Theorem

Let l ⊆ R2 be such line on the plane and
∑∞

n=1 vn such series in
R2 that

S

( ∞∑
n=1

vn

)
= l .

Then

SId

( ∞∑
n=1

vn

)
= l .

Alternatively, instead of Id you can put any ideal that has the (R)
property.
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The two-dimensional case, ideal version

Definition

We say that an ideal I ⊆ P(N) has the (R2) property if for any
conditionally convergent series of vectors on the plane

∑∞
n=1 vn

such that S(
∑∞

n=1 vn) = R2 and any v ∈ R2 there exists a
permutation σ : N→ N such that

∑∞
n=1 vσ(n) = v and

supp(σ) ∈ I.

Theorem (Folklore)

Let (vn)n ⊆ R2, vn → 0, ∀w 6= 0
∑∞

n=1(w ◦ vn)+ =∞. Then

S

( ∞∑
n=1

vn

)
= R2.
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The two-dimensional case, ideal version

Theorem

Let (vn)n ⊆ R2, vn → 0. The following are equivalent:

S (
∑∞

n=1 vn) = R2.

The set {
∑

n∈F vn : F ⊆ N, |F | < ℵ0} is dense in R2.

Theorem

Let S (
∑∞

n=1 vn) = R2. There exists a set A ⊆ N such that both
series

∑
n∈A vn and

∑
n∈N\A vn are conditionally convergent and

S
(∑

n∈A vn
)

= R2,S
(∑

n∈N\A vn
)

= R2.

Corollary

If I ⊆ P(N) is a maximal ideal, then it has the (R2) property.
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The two-dimensional case, ideal version

Theorem

Let I ⊆ P(N) be an ideal. The following are equivalent.

(i) If (vn)n ⊆ R2, vn → 0 is such that
∀w 6= 0

∑∞
n=1(w ◦ vn)+ =∞ then

∃A ∈ I ∀w 6= 0
∑

n∈A(w ◦ vn)+ =∞.

(ii) I cannot be extended to a summable ideal.
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Thank you.
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