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Let X and Y be topological spaces and f : X → Y be a map.
(We do not assume that f is continuous.)

Let P be a topological property (property of a set which is
invariant under homeomorphisms) like residual set, dense set,
nowhere dense set,...

Under what conditions on f the following implications

A ⊂ X has property P ⇒ f (A) ⊂ Y has property P,
B ⊂ Y has property P ⇒ f−1(B) ⊂ X has property P,

and the converse implications hold?
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Noll, D., On the Preservation of Baire Category under
Preimages :
Let f : X → Y be a continuous dense and nearly feebly open
mapping acting from a Čech complete space X into completely
regular Y . Then residual sets are carried over under f .

Topological space X is called Čech complete if
X is completely regular and
X possesses a complete sequence, i.e., a sequence of an open
coverings (Un) such that every filter F on X satisfying
F ∩ Un 6= ∅ for all n has a cluster point ⋂

A∈F
A 6= ∅





Theorem
Let X be a Čech complete space and let Y be a metric space.
Let f : X → Y be a quasi-continuous and nearly feebly open
function such that f (X) = Y . Then f maps residual subsets of
X onto residual subsets of Y .

The condition f being quasi-continuous cannot be omitted.
(example)
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A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense

nowhere
dense



The following properties are equivalent:
1 for any dense set A ⊂ X , then f (A) is so in Y ,
2 any B ⊂ Y is dense whenever f−1(B) is so in X ,
3 f (X) is dense in Y and f is somewhat continuous.

A map f : X → Y is said to be somewhat continuous if

Int f−1(V ) 6= ∅

whenever V is an open subset of Y such that f−1(V ) 6= ∅.



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC

⇔
nowhere
dense



The following properties are equivalent:
1 any A ⊂ X is dense whenever f (A) is so in Y ,
2 f has no redundant open set.

A nonempty open set U ⊂ X is said to be redundant for f , if
f (X −U ) = f (X).



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC NROS

⇔
nowhere
dense



The following properties are equivalent:
1 for any dense set B ⊂ Y , f−1(B) is so in X ,
2 f is feebly open.

A map f : X → Y is said to be feebly open if

Int f (U ) 6= ∅

whenever U 6= ∅ is an open subset of X .



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔
nowhere
dense



Consider the following two conditions.
1 Int f (X) is dense in Y and any A ⊂ X is dense whenever

f (A) is so in Y ,
2 for any dense set B ⊂ Y , f−1(B) is so in X .

Then (1)⇒ (2).



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔ ⇐ Int f (X) = Y
nowhere
dense



The following properties are equivalent:
1 for any nowhere dense set B ⊂ Y , f−1(B) is so in X ,
2 any A ⊂ X is nowhere dense whenever f (A) is so in Y ,
3 f is nearly feebly open and restrictively quasi-continuous.

A map f : X → Y is said to be restrictively quasi-continuous if,
for every closed nowhere dense set C ⊂ Y ,

Int f−1(C ) ⊂ f−1(C ).



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔ ⇐ Int f (X) = Y
nowhere
dense NFO, RQC

⇔



Consider the following two conditions.
1 f (X) is dense in Y , f is somewhat continuous and has no

redundant open set,
2 for any nowhere dense set A ⊂ X , f (A) is so in Y .

Then (1)⇒ (2).

Example ((2)⇒ (1) is not true).

f (x) =
{

2x if x ∈ [0, 1
2),

2− 2x if x ∈ [1
2 , 1].



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔ ⇐ Int f (X) = Y
nowhere ⇐ f (X) = Y ,
dense SC, NROS NFO, RQC

⇔



Consider the two following conditions.
1 f is feebly open and somewhat continuous,
2 any B ⊂ Y is nowhere dense whenever f−1(B) is so in X .

Then (1)⇒ (2).

Example ((2)⇒ (1) is not true).

f (x) =
{

x if x ∈ Q,
−x if x ∈ R−Q.



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔ ⇐ Int f (X) = Y
nowhere ⇐ f (X) = Y , ⇐
dense SC, NROS FO, SC NFO, RQC

⇔



Consider the two following conditions.
1 Int f (X) is dense in Y and for any nowhere dense set

A ⊂ X , f (A) is so in Y ,
2 any B ⊂ Y is nowhere dense whenever f−1(B) is so in X .

Then (1)⇒ (2).



A⇒ f (A) f−1(B)⇒ B B ⇒ f−1(B) f (A)⇒ A
dense f (X) = Y ,SC FO NROS

⇔ ⇐ Int f (X) = Y
nowhere ⇐ f (X) = Y , ⇐
dense SC, NROS FO, SC NFO, RQC

⇐ Int f (X) = Y ⇔
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