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Notation

Let I denote an open interval fulfilling ∅ 6= I ⊂ R .
For f : I → R and x ∈ I , if the finite limit

f ′(x) = lim
h→0

f (x + h)− f (x)

h

exists, we call it the derivative of f at x and we say that f is
differentiable [at x ].

Considering one-sided limits at 0 we obtain the derivative of f at x
from the left/right. We denote them by f ′−(x) and f ′+(x) ,
respectively.

We can also speak about differentiability from the left/right.
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Approximately constant functions with small error

Proposition

Let c ≥ 0 and p > 1 . If f : I → R satisfies the inequality

|f (y)− f (x)| ≤ c|y − x |p

for all x , y ∈ I , then f is constant.

Hint: f ′ = 0 .
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Localization

Definition

We say that f : I → R satisfies a property P locally (or shortly: f is
locally P) if, for every x ∈ I , there exists an open interval I (x)
fulfilling x ∈ I (x) ⊂ I , such that f |I (x) satisfies P.

Definition

We say that the property P is localizable (or ”P satisfies the
localization principle”) if, for any function f : I → R , the following
implication holds:

f is locally P ⇒ f is P.
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Lists of (counter)examples

Localizable properties

local concepts (continuity, differentiability);

f is a polynomial of degree at most n [⇔ f (n+1) = 0];

monotonicity (in a given sense) [!]

Non-localizable properties

boundedness;

Lipschitz property;

absolute/uniform continuity.

As an example one may consider f (x) = 1/x (x > 0).
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Monotonicity

Proposition

If f : I → R is locally increasing, then f is increasing.

Sketch of the proof:
For each u ∈ I , f is increasing on a neighbourhood I (u) of u .

Let x , y ∈ I , x < y and let M(x) denote the set of of all z ∈]x , y ]
admitting a partition x = x0 < x1 < · · · < xn−1 < xn = z of [x , z ]
(with some n ∈ N) such that, for each j ∈ {1, 2, . . . , n},
xj−1 , xj ∈ I (uj) with some uj ∈ I .

Clearly, for every z ∈ M(x), we have

f (x) = f (x0) ≤ f (x1) ≤ · · · ≤ f (xn−1) ≤ f (xn) = f (z) .

By basic arguments we can also check that

M(x) =]x , v [ or M(x) =]x , v ] with some v ∈]x , y ];

v ∈ M(x); v = y .
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Concept of convexity

Definition

We call f : I → R convex if the inequality

f
(

(1− t) · x + t · y
)
≤ (1− t) · f (x) + t · f (y) (1)

holds for all x , y ∈ I and t ∈ [0, 1].

Proposition

If f : I → R is convex and x , y , z ∈ I fulfil x < y < z , then

f (y)− f (x)

y − x
≤ f (z)− f (x)

z − x
≤ f (z)− f (y)

z − y
.

Conversely, any of these inequalities (satisfied identically) implies
the convexity of f .
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Derivatives and convexity

For f : I → R , the following assertions are equivalent:

(A) f is convex.

(B) f is differentiable from the left/right. Furthermore, for any
x , y ∈ I with x < y , we have

f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y) .

(C) f is differentiable from the left/right. Furthermore, for any
x ∈ I , we have

sup
x>s∈I

f (s)− f (x)

s − x
≤ f ′−(x) ≤ f ′+(x) ≤ inf

x<t∈I

f (t)− f (x)

t − x
.

(D) For every x ∈ I , there exists λx ∈ R such that

f (y)− f (x) ≥ λx(y − x) for all y ∈ I .
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Related Remarks

Hints for the proof:
(A) ⇒ (C) ⇒ (D) ⇒ (A); f ′−(x) ≤ λx ≤ f ′+(x).

(A) ⇒ (B): Use the Proposition.

(B) ⇒ (A): It is clear that f is continuous (from both direction).
According to a generalized MVT, for every x , y ∈ I with x < y ,
there exists u ∈]x , y [ satisfying

f ′−(u) ≤ f (y)− f (x)

y − x
≤ f ′+(u) .

We can again apply the Proposition.

Remark:
Using property (B) and the localization principle for increasing
functions, we obtain that convexity is localizable.
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Approximate convexity with small error

Theorem (Z. B. and N. Nagy, 2013)

Suppose that c ≥ 0, p > 1 , and f : I → R satisfies the inequality

f (λx +(1−λ)y) ≤ λf (x)+(1−λ)f (y)+c
(
λ(1−λ) |x − y |

)p
(2)

for every x , y ∈ I and λ ∈ [0, 1]. Then f is convex (so f satisfies
(2) with c = 0 as well).

Hints for the proof:
We prove that f satisfies property (C).
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Basic concepts

In this section, let K denote a subfield of the real number field R
and X be a vector space over K . We denote the set of positive
elements of K by K +.

A mapping F : X → R is called

additive if the equation F (x + y) = F (x) + F (y)
is fulfilled for every x , y ∈ X ;

subadditive if the inequality F (x + y) ≤ F (x) + F (y)
is fulfilled for every x , y ∈ X ;

K -homogeneous if the equation F (rx) = rF (x)
is fulfilled for every x ∈ X and r ∈ K ;

positively K -homogeneous if the equation F (rx) = rF (x)
holds for all x ∈ X and r ∈ K +;

K -linear if F is additive and (positively) K -homogeneous;

K -sublinear if F is subadditive and positively K -homogeneous.
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Abstract tools and concepts

Lemma

Let F : X → R be K -sublinear and u ∈ X be fixed. Then there
exists a K -linear mapping ϕ : X → R such that ϕ(u) = F (u) and
ϕ(x) ≤ F (x) for every x ∈ X .

Let A denote the set of all additive mappings A : X → R and let
AK denote the set of all K -linear mappings A : X → R .
Let us note that, for instance, in the particular case X = RN , we
have A = AQ .
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Assumptions concerning the domain

A subset D of the space X is called K -algebraically open if, for
every x ∈ D and u ∈ X , there exists δ > 0 such that

x + ru ∈ D whenever r ∈ K∩]− δ, δ[ .

We say that D is K -convex if

rx + (1− r)y ∈ D for every x , y ∈ D and r ∈ K ∩ [0, 1].

In this section, let D denote a K -algebraically open and K -convex
subset of X . As an example, one may suppose that D is an open
interval and X = R .
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K -subdifferential and radial K -derivatives
Let f : D → R and x0 ∈ D . The set

∂K f (x0) = {A ∈ AK | ∀x ∈ D : f (x0) + A(x − x0) ≤ f (x) }

is called the K -subdifferential of f at x0 . If A ∈ ∂K f (x0), we say
that A is a K -subgradient of the function f at the point x0 .

Let f : D → RN , x0 ∈ D , and u ∈ X . If the limit

dK f (x0 , u) = lim
K+3r→0

1

r
(f (x0 + ru)− f (x0))

exists, it is called the radial K -derivative of f at x0 in the direction
u. We shall say that f is radially K -differentiable

[
at x0

]
if

dK f (x0 , v) ∈ RN exists for every v ∈ X .

Let f : D → R and x0 ∈ D . If f is radially K -differentiable at x0 ,
the set

δK f (x0) = {A ∈ AK | A(v) ≤ dK f (x0 , v) for every v ∈ X }

is called the K -subderivative of f at x0 .
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Operation rules for radial K -derivatives

Theorem (Z. B. and Zs. Páles, 2006)

Let us suppose that f : D → RN is radially K -differentiable at
x0 ∈ D , E ⊂ RN is an open set such that f (D) ⊂ E , F : E → R
is differentiable at f (x0), and let h(x) = F (f (x)) for all x ∈ D.
Then h : D → R is also radially K -differentiable at x0 , and, for
every v ∈ X , we have

dKh(x0 , v) = F ′(f (x0))dK f (x0 , v).

Corollary

If f , g : D → R are radially K -differentiable at x0 ∈ D, then f + g
and fg are also radially K -differentiable at x0 , and, for every
v ∈ X , we have

dK (f + g)(x0 , v) = dK f (x0 , v) + dKg(x0 , v),

dK (fg)(x0 , v) = g(x0)dK f (x0 , v) + f (x0)dKg(x0 , v).
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K -convex and Jensen-convex functions

Definition

We call f : D → R K -convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) (3)

holds for every x , y ∈ D , λ ∈ [0, 1] ∩ K .

In this terminology, convex functions on an interval are exactly the
R-convex ones.

Definition

We call f : D → R Jensen-convex if

f

(
x + y

2

)
≤ f (x) + f (y)

2
(4)

holds for every x , y ∈ D .
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Jensen-convex functions on an interval

Theorem (Jensen, 1906)

Let X = R and D be an open interval.
f : D → R is Jensen-convex ⇐⇒ f is Q-convex.

Corollary

Let X = R and D be an open interval.
f : I → R is convex ⇐⇒ f is continuous and Jensen-convex.

Thus the concept of K -convex functions involves, among others,

Jensen-convex functions on an open interval (K = Q);

convex functions defined on a convex and R-algebraically
open subset of an arbitrary real linear space (K = R).
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Differentiation of K -convex functions

Theorem (Z. B. and Zs. Páles, 2006)

If f : D → R is K -convex, then it is also radially K -differentiable.
Moreover, for every x ∈ D , the mapping ψ(v) = dK f (x , v)
(v ∈ X ) is K -sublinear, ∂K f (x) = δK f (x), and, for each u ∈ X ,
there exists A ∈ δK f (x) such that A(u) = dK f (x , u).

Proposition

If f : D → R such that ∂K f (x) 6= ∅ for every x ∈ D , then f is
K -convex.

Theorem (Z. B. and Zs. Páles, 2006)

Suppose that g , h : D → R are K -convex functions and
∂Kg(x) = ∂Kh(x) for every x ∈ D . Then there exists a constant
c ∈ R such that g(x) = h(x) + c for all x ∈ D .
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The difference operator

Let I denote a non-empty open interval in R .
For f : I → R , x ∈ I and h ∈ R fulfilling x + h ∈ I , let

∆hf (x) = f (x + h)− f (x) .

Higher order iterates of the difference operator are defined by the
recursion

∆n+1
h f (x) = ∆h(∆n

hf (x)) (n ∈ N).

Proposition

If f : I → R , x ∈ I and h ∈ R fulfils x + nh ∈ I , then

∆n
hf (x) =

n∑
k=0

(−1)n−k
(

n
k

)
f (x + kh) .
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Generalized polynomials

Theorem (R. Ger, 1994; ...)

Let n ∈ N . A function f : I → R satisfies the functional equation

∆n+1
h f (x) = 0 (x ∈ I , x + (n + 1)h ∈ I ) (5)

if, and only if, f admits a unique extension F : R→ R of the form

F (x) = h0 +
n∑

k=1

hk(x) (x ∈ R), (6)

where h0 ∈ R and, for each k ∈ {1, 2, . . . , n}, there exists a
symmetric, k-additive function Ak : Rk → R such that
hk(x) = Ak(x , x , . . . , x) (x ∈ R).

Functions given by the representation (6) are called generalized
polynomials of degree at most n, while the functional equation (5)
was considered by Fréchet (in 1909).
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Generalized monomials

The function hn is called generalized monomial of degree n, and it
represents the general solution of the functional equation

∆n
yh(x) = n!h(y) (x , y ∈ R). (7)

Let us note that a generalized monomial of degree n is

additive if n = 1 ;

quadratic (solution of the norm square equation) if n = 2 .
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Dinghas’ interval derivative

A. Dinghas introduced (in 1966) the n-th interval derivative of
f : I → R at x ∈ I by the expression

Dnf (x) = lim
a≤x≤b
b−a→0

(
−n

b − a

)n n∑
k=0

(−1)k
(

n
k

)
f

((
1− k

n

)
a +

k

n
b

)

whenever the limit exists.

Let us note that the finite limit

D1f (x) = lim
a≤x≤b
b−a→0

f (b)− f (a)

b − a

exists if, and only if, f is differentiable at x in the usual sense.
Moreover, if f is differentiable at x , then D1f (x) = f ′(x).

In the higher order cases, the situation is different.
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Characterization of generalized polynomials

Theorem (A. Simon and P. Volkmann, 1994)

Let n ∈ N and f : I → R . The following assertions are equivalent:

(A) ∆n
hf (x) = 0 for all x ∈ I and h ∈ R fulfilling x + nh ∈ I .

(B) Dnf (x) = 0 for every x ∈ I .

A. Gilányi considered (in 1997) the analogous limit

D̃nf (x) = lim
y≤x≤y+nh

h→0

∆n
hf (y)− n!f (h)

hn

and proved, for any n ∈ N and f : R→ R , that

D̃nf (x) = 0 (x ∈ R) ⇔ ∆n
uf (x) = n!f (u) (x , u ∈ R).
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Generalized Jensen-convexity of higher order
A local characterization of Jensen-convexity of higher order was
elaborated by A. Gilányi and Zs. Páles (in 2001) in a somewhat
more general context.

T -convexity

Let T = (t1 , . . . , tn+1), where t1 , . . . , tn+1 are fixed positive
numbers. For f : I → R , x ∈ I and h > 0 such that
x + (t1 + · · ·+ tn+1)h ∈ I , let

∆T
h f (x) := ∆t1h . . .∆tn+1hf (x) .

We say that f : I → R is T -convex if ∆T
h f (x) ≥ 0 for all

x ∈ I , h > 0 such that x + (t1 + · · ·+ tn+1)h ∈ I .

Clearly, T -convexity and cT -convexity are equivalent for c > 0 . In
the case t1 = · · · = tn+1 = 1 the notion of T -convexity is
obviously the same as Jensen-convexity of order n.
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Lower Dinghas type interval derivatives

Lower T -Dinghas interval derivative of f

The lower T -Dinghas interval derivative of f : I → R at ξ ∈ I is
defined by

DT f (ξ) := lim inf
(x , h)→(ξ , 0)

x≤ξ≤x+(t1+···+tn+1)h

∆T
h f (x)

(t1h) . . . (tn+1h)
.

n-th order lower Dinghas interval derivative of f

Accordingly, if n denotes a positive integer, the n-th order lower
Dinghas interval derivative of f : I → R at ξ ∈ I is defined by

Dnf (ξ) := lim inf
(x , h)→(ξ , 0)
x≤ξ≤x+nh

∆n
hf (x)

hn
.
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Localization of T -convexity

DT f (ξ) := lim inf
(x , h)→(ξ , 0)

x≤ξ≤x+(t1+···+tn+1)h

∆T
h f (x)

(t1h) . . . (tn+1h)
, Dnf (ξ) := lim inf

(x , h)→(ξ , 0)
x≤ξ≤x+nh

∆n
hf (x)

hn

Gilányi and Páles proved a strong connection between the above
two concepts. Namely, they established that a function f : I → R
is T -convex if, and only if, DT f (ξ) ≥ 0 for every ξ ∈ I .
Considering the particular case when t1 = · · · = tn+1 = 1 , one
obtains the following statement:

Theorem (A. Gilányi and Zs. Páles, 2001)

A function f : I → R is Jensen-convex of order n if, and only if,
Dn+1f (ξ) ≥ 0 for every ξ ∈ I .
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Difference operators
As well as in the previous section, I denotes an open subinterval of
the real line.

We may define n-th order differences for f : I → R , x ∈ I ,
1 < n ∈ N , and uj ∈ R (j = 1, 2, . . . , n) fulfilling

x +
n∑

j=1

εjuj ∈ I for every εj ∈ {0, 1} (j = 1, 2, . . . , n),

by the recursion

∆u1 , ... , un−1 , un f (x) = ∆un∆u1 , ... , un−1f (x) .

Let us note that

∆u1 , u2f (x) = ∆u2∆u1f (x) = ∆u1∆u2f (x)

whenever { x , x + u1 , x + u2 , x + u1 + u2 } ⊂ I .
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Strong K -differentiability

In this part of the presentation, p ∈ N , K denotes a subfield of R
and K+ = K∩]0,+∞[ .

Definition

Let f : I → R , x0 ∈ I , and h = (h1 , . . . , hp) ∈ Rp. If the finite
limit

Dp
K f (x0 ; h) = lim

x→x0

Kp
+3r→0

1

r1r2 · · · rp
∆r1h1 , r2h2 , ... , rphp f (x)

(where r = (r1 , . . . , rp) ) exists, it is called the pth order strong
K -derivative of f at x0 in the direction h = (h1 , . . . , hp), and we
shall say that f is strongly K -differentiable of order p [at the point
x0 in the direction h = (h1 , . . . , hp)].
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Smooth example
Let

SpK (I ) = { f : I → R | f is strongly K -differentiable of order p }.

Let

Cp(I ) = { f : I → R | f is p times continuously differentiable }.

Example

If f ∈ Cp(I ), then f ∈ SpK (I ). Moreover, for every x0 ∈ I and
h = (h1 , . . . , hp) ∈ Rp,

Dp
K f (x0 ; h) = f (p)(x0)h1h2 · · · hp .
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Algebraic example
Example

Suppose that F0 ∈ R , Fk : Rk → R is symmetric and
multi-additive (k = 1, 2, . . . , p − 1), Fp : Rp → R is symmetric and
multi-linear over K , and let f0(x) = F0 for all x ∈ R ,

fk(x) = Fk(

k︷ ︸︸ ︷
x , x , . . . , x) for every x ∈ R , k = 1, 2, . . . , p ,

and

f (x) =

p∑
k=0

fk(x) (x ∈ I ).

Then f ∈ SpK (I ). Moreover, for every x0 ∈ I and
h = (h1 , . . . , hp) ∈ Rp,

Dp
K f (x0 ; h) = p!Fp(h1 , . . . , hp).
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Decomposition of strongly K -differentiable functions

Theorem (Z. B.)

Let f : I → R. Then f ∈ SpK (I ) if, and only if, there exist
g ∈ Cp(I ) and multi-additive functions Fk : Rk → R (k = 1, . . . , p)
such that Fp is multi-linear over K and

f (x) = g(x) +

p∑
k=1

Fk(

k︷ ︸︸ ︷
x , x , . . . , x) for every x ∈ I .

Using this decomposition theorem, we can prove the localization
principle for such decompositions.
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Localization principle for the decomposition

Theorem (Z. B.)

Suppose that f : I → R such that for every x ∈ I there exist an
open interval Jx ⊂ I fulfilling x ∈ Jx , a p times continuously
differentiable function gx : Jx → R , and a generalized polynomial
Px : R→ R of order at most p satisfying

f (y) = gx(y) + Px(y) for all y ∈ Jx .

Then there exist a p times continuously differentiable function
g : I → R and a generalized polynomial P : R→ R of order at
most p satisfying

f (x) = g(x) + P(x) for all x ∈ I .
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Strong geometric derivatives

Let 0 < θ < 1 and f : I → R . For each h ∈ R and x ∈ I , the
extended real numbers

Dθ
hf (x) = lim inf

y → x
n→∞

f (y + θnh)− f (y)

θn

and

D
θ
hf (x) = lim sup

y → x
n→∞

f (y + θnh)− f (y)

θn

will be called the lower/upper strong θ-derivatives of f at x in the
direction h .

Clearly,

D
[θ]
h f (x) ≤ D

[θ]
h f (x) .
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Strong geometric differentiability
Definition. Let 0 < θ < 1 , f : I → R , x0 ∈ I , h ∈ R . If

−∞ < D
[θ]
h f (x0) = D

[θ]
h f (x0) < +∞ ,

then f is called strongly θ-differentiable, and

D
[θ]
h f (x0) = D

[θ]
h f (x0)

is called the strong θ-derivative of f[
at x0 in the direction h

]
.

Remark. Let us note that

D
[θ]
h f (x0) = lim

x→x0

n→∞

f (x + θnh)− f (x)

θn
.
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Derivatives of convex functions

Theorem

Let 0 < θ < 1 . If f : I → R is convex, x1 , x2 ∈ I such that
x1 < x2 , and h > 0 , then

−∞ < D
[θ]
h f (x1) ≤ D

[θ]
h f (x2) < +∞ . (8)

Let K[θ]
+ (I ) denote the set of functions f : I → R that fulfil

inequality (8) for all h > 0 and x1 , x2 ∈ I such that x1 < x2 .
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−∞ < D
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Dyadic derivatives

In the rest of this talk we restrict our

considerations to the case θ = 1
2 . For

simplicity, we shall write � in place of [1/2]

as an upper index.

Accordingly, instead of strong 1
2-derivatives,

we write strong dyadic derivatives, while
instead of strongly 1

2-differentiable functions,
we write strongly dyadically differentiable
functions.
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Decomposition Theorems

Theorem (Z. B.)

Let us suppose that the function f : I → R belongs to the class
K�+(I ) . Then there exist a convex function g : I → R and an
additive mapping A : R→ R such that

f (x) = g(x) + A(x) for every x ∈ I .

Theorem (Z. B., 2001; D. Broszka and Z. Grande, 2007)

A function f : I → R is strongly dyadically differentiable if, and
only if, there exist a continuously differentiable function g : I → R
and an additive mapping A : R→ R such that

f (x) = g(x) + A(x) for every x ∈ I .
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Approximately Wright-convex functions

In this section, let 0 ≤ ε ∈ R and 1 < p ∈ R .

Theorem (Z. B.)

If f : I → R satisfies the inequality

f
(
λx + (1− λ)y

)
+ f
(
(1− λ)x + λy

)
≤ f (x) + f (y) + ε (λ(1− λ)|x − y |)p (9)

for every x , y ∈ I and λ ∈ [0, 1], then f ∈ K�+(I ).

Corollary

If f : I → R satisfies the inequality (9) for every x , y ∈ I and
λ ∈ [0, 1], then f is Wright-convex (i.e., f satisfies the inequality
(9) with ε = 0 as well).
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A. Simon and P. Volkmann, Eine Charakterisierung von
polynomialen Funktionen mittels der Dinghasschen
Intervall-Derivierten, Results Math. 26/3-4 (1994), 382–384.
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Thank you for your kind attention!
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