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Background

The lower and the upper densities of A C w are given by the

formulas JA
d(A) = iminf Card(AN n)

n—o00 n
d(A) = limsup M.

n—o0 n

If d(A) = d(A), we say that the natural density of A exists and it
is denoted by d(A).
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The lower and the upper densities of A C w are given by the

formulas JA
d(A) = iminf Card(AN n)

n—o00 n
d(A) = limsup M.

n—o0 n

If d(A) = d(A), we say that the natural density of A exists and it
is denoted by d(A).

We say that a sequence (x,) of real numbers is statistically
convergent to g € R if for any € > 0 we have

d{new:|g—xa| >¢€})=0.
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Background

Let X be any set. A family Z C P(X) is called an ideal on X
whenever

e feJand X ¢ J,
o if A,Be& Jthen AUB € J,
@ AC Band B € Jthen A€ J.
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o if A,Be& Jthen AUB € J,
@ AC Band B € Jthen A€ J.

We will consider ideals on w. In this case it is natural to assume
that considered ideals contains Fin (ideal of finite subsets of w).
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sets in Z there is a set A € 7 such that A, C* Aforall n € w
(where A, C* A means that A, \ A € Fin).
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Background

Let X be any set. A family Z C P(X) is called an ideal on X
whenever

e feJand X ¢ J,
o if A,Be& Jthen AUB € J,
@ AC Band B € Jthen A€ J.

We will consider ideals on w. In this case it is natural to assume
that considered ideals contains Fin (ideal of finite subsets of w).

An ideal Z on w is called a P-ideal if for every sequence (Ap)necw Of
sets in Z there is a set A € 7 such that A, C* Aforall n € w
(where A, C* A means that A, \ A € Fin).

Every ideal Z on w can be treated as a subset of the Cantor space
2% since P(w) and 2% can be identified via the characteristic
functions.
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Submeasures

A submeasure on w is a function ¢: P(w) — [0, o0] such that:
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Submeasures

A submeasure on w is a function ¢: P(w) — [0, o0] such that:
o p(0)=0;
e if AC B then ¢(A) < ¢(B),
° p(AUB) < ¢(A) +¢(B),
e o({n}) < oo for all n € w.
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A submeasure on w is a function ¢: P(w) — [0, o0] such that:
° »(0) =0
e if AC B then ¢(A) < ¢(B),
° p(AUB) < ¢(A) +¢(B),
e o({n}) < oo for all n € w.

A submeasure ¢ is called a lower semicontinuos submeasure (in
short, Iscsm) if p(A) = lim,_00 p(AN n) for all A C w.
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Submeasures

A submeasure on w is a function ¢: P(w) — [0, o0] such that:
° »(0) =0
e if AC B then ¢(A) < ¢(B),
° p(AUB) < ¢(A) +¢(B),
e o({n}) < oo for all n € w.

A submeasure ¢ is called a lower semicontinuos submeasure (in
short, Iscsm) if p(A) = lim,_ 00 p(AN n) for all A C w. For any
Iscsm ¢, we consider two ideals given by

Exh(y) = {A C w: HILngO ©(A\ n) = 0}.

Fin(p) = {A Cw: p(A) < oo}.
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Submeasures

Let ¢ be a Iscsm. Then Exh(yp) is an F,5 P-ideal, Fin(y) is an F,
ideal and Exh(y) C Fin(¢p).
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Submeasures

Let ¢ be a Iscsm. Then Exh(yp) is an F,5 P-ideal, Fin(y) is an F,
ideal and Exh(y) C Fin(¢p).

Theorem [Mazur, Solecki]
Let Z be an ideal on w. Then
@ Zis an F, ideal if and only if Z = Fin(p) for some Iscsm .

@ Z is an analytic P-ideal if and only if Z = Exh(y) for some
Iscsm .

@ Zis an F, P-ideal if and only if Z = Fin(¢) = Exh(y) for
some Iscsm .

If Z is ideal on w then it is not a Gy set. )
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Background

We define a density ideal Zy4 as Zy := {A C w : d(A) = 0}. It may
be shown that Zy = Exh(y) for Iscsm ¢ given by

©(A) = sup for AC w.

new

card(AN n)
n
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Background

We define a density ideal Zy4 as Zy := {A C w : d(A) = 0}. It may
be shown that Zy = Exh(y) for Iscsm ¢ given by

card(ANn
¢(A) = sup card(An n)

new

for A C w.

Let Z be an ideal on w. We say that sequence (x,) is Z-convergent
to g if for any e > 0 we have {n € w : |g — xp| > €} € T.
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Background

We define a density ideal Zy4 as Zy := {A C w : d(A) = 0}. It may
be shown that Zy = Exh(y) for Iscsm ¢ given by
d(AN
©(A) = sup car(nn) for A C w.

new

Let Z be an ideal on w. We say that sequence (x,) is Z-convergent
to g if for any e > 0 we have {n € w : |g — xp| > €} € T.

Statistical convergence is exactly Zy - convergence. )
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Das, Bhunia, Pal

In 2012 Das, Bhunia and Pal generalizated statistical convergence.
They introduced upper and lower densities of order a € (0, 1] in
the following way:
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In 2012 Das, Bhunia and Pal generalizated statistical convergence.
They introduced upper and lower densities of order a € (0, 1] in
the following way:

A
do(A) = limiinf 2rdAO ")
— n—00 n%

d,(A) = limsup card(A 1 n) n).
n—o00 n<

If d,(A) = d*(A), we say that the natural density of order a of A
exists and denote it by d,(A).
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Das, Bhunia, Pal

In 2012 Das, Bhunia and Pal generalizated statistical convergence.
They introduced upper and lower densities of order a € (0, 1] in
the following way:

A
do(A) = limiinf 2rdAO ")
— n—00 n%

d,(A) = limsup card(A 1 n) n).
n—o00 n<

If d,(A) = d*(A), we say that the natural density of order a of A
exists and denote it by d,(A).

They considered possible consequences of such idea, especially
properties of a-statistically convergent sequences.
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This idea can go further. We fix any function g: w — [0, c0) with
lim g(n) = co. Then we define the upper density of weight g by

n—oo
the formula

— A
dz(A) = limsup card(AN n)

for AC w
n—00 g(n)
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This idea can go further. We fix any function g: w — [0, c0) with
lim g(n) = co. Then we define the upper density of weight g by

n—oo
the formula

— A
dz(A) = limsup card(AN n)

for AC w
n—00 g(n)

Consider the following family
Zg :={A Cw: dg(A) =0}

Of course w € Zg <= n/g(n) — 0. So, if we additionally assume
n/g(n) - 0 then w ¢ Zg, and we observe that Zg is an ideal on w.
Note that Fin & Zg.
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Results

If g: w— [0,00) is such that g(n) — oo and n/g(n) - 0, then
the ideal Zg is equal to Exh(yp) where

. card(AN n)
AA = )

and ¢ is a lower semicontinuos submeasure on w. Consequently,
Zg is an F,5 P-ideal on w.

for A C w,
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If g: w— [0,00) is such that g(n) — oo and n/g(n) - 0, then
the ideal Zg is equal to Exh(yp) where

oy A )
PA) =sup —

and ¢ is a lower semicontinuos submeasure on w. Consequently,
Zg is an F,5 P-ideal on w.

Let us denote set of all functions g: w — [0, c0) satisfying
conditions g(n) — oo and n/g(n) - 0 by G.

for A C w,
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Proposition

Let g1,8> € G be such that there exist M > 0 and k € w such that
gi1(n)/g2(n) < M for all n > k. Then Zg, C Zg,. Consequently, if
there exist 0 < m < M and k € w such that

m < gi(n)/g2(n) < M for all n > k, then Zg, = Zg,.
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Proposition

Let g1,8> € G be such that there exist M > 0 and k € w such that
gi1(n)/g2(n) < M for all n > k. Then Zg, C Zg,. Consequently, if
there exist 0 < m < M and k € w such that

m < gi(n)/g2(n) < M for all n > k, then Zg, = Zg,.

Proposition

For each function f € G there exists a nondecreasing function
g € G such that Zg = Zr.
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Let f € G be such that n/f(n) — co. Then there exists a set
A C w such that the sequence (card(A N n)/f(n)) is bounded but
not convergent to 0.

Jarostaw Swaczyna On some modification of density zero ideal



Lemma

Let f € G be such that n/f(n) — co. Then there exists a set
A C w such that the sequence (card(A N n)/f(n)) is bounded but
not convergent to 0.

v
Theorem

If g1,82 € G are such that n/gx(n) — oo, g2(n)/g1(n) — oo then
Zg & Zg,. If g € G and n/g(n) — oo then Zg & Z.
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There exists a function g € G such that Z; & Z and Z; is
different from any ideal generated by a function of the form n“
with 0 < a < 1.
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There exists a function g € G such that Z; & Z and Z; is
different from any ideal generated by a function of the form n“
with 0 < a < 1.

There exists a function g € G such that Z ¢ Z, )

There exists a function g € G such that Z and Z, are
incomparable with respect to inclusion.
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There exists a function g € G such that Z; & Z and Z; is
different from any ideal generated by a function of the form n“
with 0 < a < 1.

There exists a function g € G such that Z ¢ Z, )

There exists a function g € G such that Z and Z, are
incomparable with respect to inclusion.

There exists a family Gg C G of cardinality ¢ such that Z¢ is
incomparable with Z for every f € G, and Z¢ and Z, are
incomparable for any distinct f, g € Gg.
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Thank you for your attention!
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