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It is well known that mean value theorems offered by the classical
one-dimensional analysis do not carry over to vector valued map-
pings. Nevertheless, some substitutes are known. Let us mention a
few of them.

Theorem of D.E.Sanderson (1972, cf. [9], see also P.K.Sahoo
and T. Riedel [8, p. 162]). Let f : [a, b] −→ Rn be continuous on
[a, b] and differentiable on (a, b). If f (a) and f (b) are orthogonal
to a non-zero vector v ∈ Rn, then there exists a point ξ ∈ (a, b)
such that f ′(ξ) is orthogonal to v.

Theorem of R. M. McLeod (1964, cf. [7]). Let f : [a, b] −→
Rn be continuous on [a, b] and continuously differentiable on
(a, b). Then there are n points
ξ1, ξ2, ..., ξn ∈ (a, b) and n nonnegative numbers λ1, λ2, ..., λn such
that

λ1 + λ2 + · · · + λn = 1

and
f (b)− f (a) = (b− a)

n∑
k=1

λkf
′(ξk).

Theorem (folklore). Let (X, ‖ · ‖) be a real Banach space and
let f : [a, b] −→ X be continuous on [a, b] and continuously dif-
ferentiable on (a, b). Then

f (b)− f (a)
b− a

∈ cl conv f ′((a, b)) .
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To get Sanderson’s result it suffices to apply the following simple
theorem for the case where (X, (·|·)) yields and inner product space
and x∗(x) := (x|v), x ∈ X.

Theorem 1. Let (X, ‖ · ‖) be a real normed linear space and
let f : [a, b] −→ X be continuous on [a, b] and differentiable on
(a, b). Fix a nonzero member x∗ of the space X∗ dual to X. If
f (a) and f (b) are both in the kernel of x∗, then there exists a
point ξ ∈ (a, b) such that f ′(ξ) is in the kernel of x∗.

Proof. It suffices to observe that a map ϕ : [a, b] −→ R given
by the formula ϕ := x∗ ◦ f satisfies the assumptions of the classical
theorem of Rolle. Therefore, there exists a point ξ ∈ (a, b) such that
0 = ϕ′(ξ) = x∗(f ′(ξ)).

Going back to McLeod’s theorem, assume that f : R −→ Rn is
continuously differentiable. Then, for arbitrarily fixed real numbers
x < y there are n points
ξ1(x, y), ξ2(x, y), ..., ξn(x, y) ∈ (x, y) and n nonnegative numbers
λ1(x, y), λ2(x, y), ..., λn(x, y) such that

λ1(x, y) + λ2(x, y) + · · · + λn(x, y) = 1

and
f (y)− f (x)

y − x
=

n∑
k=1

λk(x, y)f ′(ξk(x, y)).
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In particular, for n = 2 we are faced to the following mean value
type result:

Theorem. Let f : R −→ R2 be continuously differentiable. Then
there exist two means mi : R× R −→ R, i = 1, 2 and a function
λ : R× R −→ [0, 1] such that
(1)
f (y)−f (x) = (y−x) [λ(x, y)f ′(m1(x, y)) + (1− λ(x, y))f ′(m2(x, y))]

for all x, y ∈ R.

In what follows, we shall study equation (1) with the coefficient
function λ(x, y) ≡ 1

2 and, to get rid of the differentiability assump-
tion, with the derivatives 1

2f
′ in (2) replaced by another unknown

function g : R −→ R2. That is, we shall examine a Pexider type
functional equation

(2)
f (y)− f (x)

y − x
= g(m1(x, y)) + g(m2(x, y))

with some means m1 and m2. Expecting to have quadratic “poly-
nomials” f (x) = ax2 + bx + c, x ∈ R, with some fixed vectors
a, b, c ∈ R2 as potential solutions, we shall be looking for solutions
of equation (1) with the coefficient function λ(x, y) ≡ 1

2 which, in
turn, forces the existence of a mean m such that

m1(x, y) = m(x, y) and m2(x, y) = x + y −m(x, y) .

This transforms equation (1) applied for λ(x, y) ≡ 1
2 to the equation

(3) f (y)− f (x) = (y − x)
1
2
f ′(m(x, y)) +

1
2
f ′(x + y −m(x, y))


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and, accordingly, equation (2) to the equation

(4)
f (y)− f (x)

y − x
= g(m(x, y)) + g(x + y −m(x, y)).

On the other hand, keeping in mind that we wish to characterize
quadratic “polynomials”, by means of Theorem 2 below, we may
force f to satisfy the functional equation

f (y)− f (x)
y − x

= h(x + y)

with some new unknown function h which jointly with (2) leads to
another Pexider type functional equation

(E1,2) h(x + y) = g(m1(x, y)) + g(m2(x, y)),

which will prove to be very interesting for its own.

To proceed, let us first note that, actually, quadratic “polynomials”
satisfy equation (3) for quite arbitrary (!) mean m. Therefore, it is
seems natural to ask what about the converse, that is to look for
possibly small families Λ of means in order that equation

(E) f (y)− f (x) = (y − x) [g(m(x, y)) + g(x + y −m(x, y))] ,

assumed to be valid for all membersm ∈ Λ, forces f to be a quadratic
“polynomial”. Once we are lucky enough a singleton Λ may do the
job. That is, for instance, the case where Λ = {A} with A being the
arithmetic mean.
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Theorem 2. Let X be a real linear space and let functions
f : R −→ X and g : R −→ X satisfy the equation

f (y)− f (x)
y − x

= h(x + y)

for all pairs (x, y) ∈ R2 such that x 6= y, then there exist points
a, b, c ∈ X such that

f (x) = ax2 + bx + c, x ∈ R,

and
h(x) = ax + b, x ∈ R.

In general, i.e. in the case where the means m(x, y) and x + y −
m(x, y) do not coincide, the situation is more complicated. To get a
characterization of quadratic “polynomials” via equation (E) we need
more means to be involved. In what follows, we shall present several
results of that kind. We begin with the family Λ ⊂ {mλ : λ ∈ [0, 1]}
of weighted arithmetic means

mλ(x, y) := λx + (1− λ)y, x, y ∈ R, λ ∈ [0, 1] ,

consisting of two elements: Λ = {mλ,m1−λ}. As we shall see, the
corresponding functional equation will characterize quadratic “poly-
nomials” for all but two particular irrational λ’s. This fact
may be viewed as somewhat surprising one but, as in everyday life,
exceptions happen.
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Theorem 3. Let X be a real linear space and let functions
f, g : R −→ X satisfy the equation
(Eλ)
f (y)− f (x) = (y − x) [g(λx + (1− λ)y) + g(λy + (1− λ)x)] ,

for all pairs (x, y) ∈ R2 and a coefficient λ ∈ [0, 1]. Then there
exist points a, b, c ∈ X such that

 f (x) = ax2 + bx + c, x ∈ R,
g(x) = ax + 1

2b, x ∈ R,

if λ /∈ {3−
√

3
6 , 3+

√
3

6 }, and, in the case where λ ∈ {3−
√

3
6 , 3+

√
3

6 },
there exist points a, b, c, d ∈ X such that

 f (x) = 2
3dx

3 + ax2 + bx + c, x ∈ R,
g(x) = dx2 + ax + 1

2b, x ∈ R.
Conversely, if (f, g) are given by one of the above formulae, then
the pair satisfies (Eλ).

Proof. Long and involved with the use of a result from A. Lisak’s
and M. Sablik’s paper [6, Lemma 1].
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Now, we shall continue our study considering the family Λ in qu-
estion that consists of two abstract quasi-arithmetic means.

Theorem 4. Let ϕ : R −→ R and ψ : R be continuous and
strictly monotonic functions generating the quasi-arithmetic and
not arithmetic means

m1(x, y) := ϕ−1

ϕ(x) + ϕ(y)
2

 and m2(x, y) := ψ−1

ψ(x) + ψ(y)
2

 ,
x, y ∈ R. If

m1(x, y) + m2(x, y) = x + y for all x, y ∈ R,

then each pair (g, h) of functions from R into an Abelian group
(X,+) satisfying equation (E1,2) has to be of the form
(9)
g(x) = ` (epx) + c and h(x) = ` (epx) + 2c for all x ∈ R,

where ` : (0,∞) −→ X is a logarithmic function, that is a solu-
tion to the functional equation

`(st) = `(s) + `(t), s, t ∈ (0,∞),

p 6= 0 is a real constant and c stands for a fixed element of X.
Conversely, for any logarithmic function ` : (0,∞) −→ X and

every constants p ∈ R \ {0}, c ∈ X, the functions g and h given
by (9) satisfy equation (E1,2) with the means m1,m2 spoken of.
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Proof. We apply a very deep result proved by Z. Daróczy and Zs.
Páles in [2] stating that whenever the equality

ϕ−1

ϕ(x) + ϕ(y)
2

 + ψ−1

ψ(x) + ψ(y)
2

 = x + y

holds for all x, y ∈ R and these two quasi-arithmetic means are not
the arithmetic ones, there exists a nonzero real constant p such that

ϕ(x) = αepx + β and ψ(x) = γe−px + δ, x ∈ R,

for some constants α, γ ∈ R \ {0} and β, δ ∈ R. Hence, for all x, y
from R we have

h(x + y) = g

1
p

log
epx + epy

2

 + g

1
p

log
e−px + e−py

2


−1
 .

Setting here H := h◦ 1
p log, G := g ◦ 1

p log and s := epx, t := epy

we obtain the equation

(B) H(st) = G

s + t

2

 + G

 2st
s + t


valid for all s, t ∈ (0,∞).

Now, fix arbitrarily u, v ∈ (0,∞) with u ¬ v and put

s := v −
√
v2 − uv and t := v +

√
v2 − uv

in (B) to get
H(uv) = G(v) + G(u).

Due to the commutativity of the group (X,+) and the resulting
symmetry of the roles of u and v in the latter equation we derive
its validity for all u, v ∈ (0,∞). Setting ` := G − G(1) we easily
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check that the map ` is logarithmic. It is a straightforward matter to
check the validity of the equalities (9). Since the verification of the
sufficiency presents no difficulties the proof has been completed.

Remark 1. Equation (B) written in the form

(B1) H1(
√
uv) = G

u + v

2

 + G

 2uv
u + v


where H1 := H ◦ (·)2 , seems to be of interest since it ties the three
basic quasi-arithmetic means: geometric, arithmetic and harmonic
ones. Its full pexiderization, that is the equation

(B2) H1(
√
uv) = G

u + v

2

 + K

 2uv
u + v


may be solved in a similar way as it was done in the case of (B1) which
is a version of (B). The general solution of (B2) reads as follows:

H1(u) = 2`(u)+c+d, G(u) = `(u)+c, K(u) = `(u)+d, u ∈ (0,∞),

where ` stands for an arbitrary logarithmic function and c, d are
arbitrary real constants.
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Quadratic “polynomials” are also characterized by means of the
following theorem being a variant of M. Kuczma’s result from [5,
Theorem 1].

Theorem 5. Let X be a real linear space and let functions
f : R −→ X and g : R −→ X satisfy the equation

f (y)− f (x)
y − x

= h(x) + h(y)

for all pairs (x, y) ∈ R2 such that x 6= y. Then there exist points
a, b, c ∈ X such that

f (x) = ax2 + bx + c, x ∈ R,

and
h(x) = ax +

1
2
b, x ∈ R.

Keeping in mind that we wish to characterize quadratic “polyno-
mials”, by means of Theorem 5 above, we may force f to satisfy the
functional equation

f (y)− f (x)
y − x

= h(x) + h(y)

with some new unknown function h which jointly with (2) leads to
yet another Pexider type functional equation

(E3,4) h(x) + h(y) = g(m3(x, y)) + g(m4(x, y)).
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Before stating a suitable result we have to prove the following

Lemma. Let ϕ : (0,∞) −→ R be either monotonic or continuous
solution to the functional equation
(B′)

ϕ(s) + ϕ(t) = ϕ

s + t

2

 + ϕ

 2st
s + t

 for all s, t ∈ (0,∞) .

Then there exist real constants α and β such that

ϕ(t) = α log t + β for all t ∈ (0,∞).

Proof. Observe that each increasing (resp. decreasing) solution of
equation (B′) is concave (resp. convex) and hence automatically con-
tinuous because of the openness of the interval (0,∞). Indeed, assu-
ming, without loss of generality, that a solution ϕ : (0,∞) −→ R is
increasing and taking into account that the aritmetic and harmonic
means

A(s, t) :=
s + t

2
, H(s, t) :=

2st
s + t

, s, t ∈ (0,∞),

are comparable in the sense that H ¬ A, we infer that

ϕ(s) +ϕ(t) = ϕ(A(s, t)) +ϕ(H(s, t)) ¬ 2ϕ(A(s, t)) = 2ϕ
s + t

2

 ,
s, t ∈ (0,∞). This proves that ϕ is Jensen-concave and being Lebes-
gue measurable (because of the monotonicity) enjoys the continuity
property. Therefore, in what follows we may restrict ourselves to the
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continuous solutions of equation (B′). A natural iterating procedure
applied for this equation leads to

ϕ(s) + ϕ(t) = ϕ(A(s, t)) + ϕ(H(s, t))
= ϕ(A(A(s, t)), H(s, t))) + ϕ(H(A(s, t), H(s, t))) = ...

Since both means in question are strict, their Gausian-compositions
A⊗H = H ⊗A, i.e. the limits of the Gauss-iterations do exist and
both are equal to the geometric mean

(0,∞)2 3 (s, t) 7−→
√
st

(see e.g. Z. Daróczy-Zs. Páles dissertation [2, Theorem 1.5]). Conse-
quently, due to the continuity of ϕ we conclude that

ϕ(s) + ϕ(t) = 2ϕ
(√
st
)

for all s, t,∈ (0,∞).

Setting here β := ϕ(1) we obtain easily that ϕ(t) = 2ϕ
(√
t
)
− β

whence
ϕ(t2) = 2ϕ(t) − β for all t ∈ (0,∞). This forces ϕ to satisfy the
equalities

2ϕ(s)+2ϕ(t) = ϕ(s2)+β+ϕ(t2)+β = 2ϕ(st)+2β for all s, t ∈ (0,∞) ,

stating that the map ` := ϕ−β is logarithmic. It is well known that
each continuous real logarithmic function on positive half-line has to
have the form

`(t) = α log t, t ∈ (0,∞).

Finally,
ϕ(t) = α log t + β for all t ∈ (0,∞),

as claimed.
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Observe that for any real constants α, β and each logarithmic
function ` : (0,∞) −→ R the map α` + β yields a solution to (B′).
Unfortunately, at present we are unable to prove that there are no
other solutions unless some regularity conditions (e.g. monotonicity
or continuity) are imposed upon the unknown function.

Remark 2. Without any regularity conditions, equation (B′) ad-
mits no nonlogarithmic (modulo compositions with affine functions)
solutions ϕ : (0,∞) −→ R provided that:

a) ϕ
(

1
t

)
= −ϕ(t), x ∈ (0,∞) (oddness with respect to the

multiplicative structure of the domain),
b) the map (0,∞) 3 t 7−→ ϕ(2t) − ϕ(t) is constant (a kind of

2-homogeneity of order 0).

In fact, b) with the corresponding constant function c implies
that
ϕ(1

2t) = ϕ(t) − c, t ∈ (0,∞), which allows to transform equation
(B′) to the following form:

ϕ(s) + ϕ(t) = ϕ(s+ t)− c+ ϕ

 st

s + t

 + c = ϕ(s+ t) + ϕ

 st

s + t


for all , s, t ∈ (0,∞). Therefore, by means of a), one has

ϕ(s) + ϕ(t)− ϕ(s + t) = ϕ

 1
1
s + 1

t

 = −ϕ
1
s

+
1
t

 ,
i.e.

ϕ(s + t)− ϕ(s)− ϕ(t) = ϕ

1
s

+
1
t

 for all s, t ∈ (0,∞).

It remains to apply a nice result of K. Heuvers [4] to conclude that
ϕ has to be a logarithmic function.
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It seems us that the assumptions a) and b) might be derived from
equation (B′) but at present we are unable to settle it.

Theorem 6. Let X stand for a real locally convex linear topo-
logical space and let ξ : R −→ R and η : R −→ R be continuous
and strictly monotonic functions generating the quasi-arithmetic
and not arithmetic means

m3(x, y) := ξ−1

ξ(x) + ξ(y)
2

 and m4(x, y) := η−1

η(x) + η(y)
2

 ,
x, y ∈ R. If

m3(x, y) + m4(x, y) = x + y for all x, y ∈ R,

then each pair (g, h) of continuous functions from R into X sa-
tisfying equation (E3,4) has to be of the form

(10) g(x) = h(x) = ax + b for all x ∈ R,

where a and b are constant vectors from X.
Conversely, for arbitrarily fixed vectors a and b from X the

functions g and h given by (10) satisfy equation (E3,4) with the
means m3,m4 spoken of.

Remark 3. Like in J. Ger’s paper [3], in a similar context several
of the results discussed may be proved with the aid of her methods
for functions defined on a proper subinterval of R or (0,∞).
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