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Miller–Steprāns paper

Framework

G. . . non-discrete Polish group
X. . . Polish space
M. . . the ideal of meager sets in X
α. . . action of G on a Polish space X

Definition (Miller–Steprāns 2006)

covG = min{|A| : ∃M ∈M A+M = G}
covα = min{|A| : A ⊆ G, ∃M ∈M α(A×M) = X}

Onďrej Zindulka (with Michael Hrušák and Wolfgang Wohofsky) Strong measure zero in separable metric spaces and Polish groups



Miller–Steprāns paper
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Miller–Steprāns paper

Two cardinals

covM = min{|F | : F ⊆ ωω ∀g ∈ ωω ∃f ∈ F ∀n ∈ ω f(n) 6= g(n)}
eq = min{|F | : F ⊆ ωω bounded, ∀g ∈ ωω ∃f ∈ F ∀n ∈ ω f(n) 6= g(n)}

Theorem (Miller–Steprāns 2006)

If G is Rn or a countable product of finite groups then covG = eq

In particular, if G = 2ω, then covG = eq

If G = Zω, then covG = covM
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If G is Rn or a countable product of finite groups then covG = eq

In particular, if G = 2ω, then covG = eq

If G = Zω, then covG = covM
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Miller–Steprāns questions

Questions [Miller–Steprāns 2006]

1 Is it consistent to have a compact group G such that covG > eq?

2 Is it true that for any infinite compact group G we have covG > eq?

3 Is it true that for every non-discrete Polish group G we have
covG = eq or covG = covM?

4 Let αn be the natural action if the isometry group on Rn. Is it true that
covαm = covαn for all m,n?

Definition

G is CLI if it admits a complete left-invariant metric.

Theorem (Dobrowolski–Marciszewski 2008)

If G is a Polish, not locally compact, CLI group (in particular, if G is abelian),
then covG = covM.
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Strong measure zero

Definition

Pr(G) = {A ⊆ G : ∀M ∈M A+M 6= G}.

Uniformity

covG = nonPr(G)

Definition (Borel 1919)

A set A in a separable metric space has strong measure zero if for any
sequence 〈rn : n ∈ ω〉 of radii there is a sequence 〈xn : n ∈ ω〉 such that
{B(xn, rn) : n ∈ ω} covers A.

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) ⊆ Smz(G).
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Strong measure zero vs. Prikry sets

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) ⊆ Smz(G).

Corollary

If G is a Polish group, then covG 6 nonSmz(G).

Corollary

If G is a Polish group, then cov(M) 6 covG 6 eq.

Proof.

• If A /∈ Pr(G), then G is covered by |A|-many translates of a meager set.
• G contains (by the Perfect Set Theorem) a (uniform) copy of the Cantor
space and therefore non(Smz(X)) 6 non(Smz(2ω)).
• non(Smz(2ω)) = eq (Bartoszynski 1995)
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Galvin–Mycielski–Solovay Theorem

Theorem (Galvin–Mycielski–Solovay 1973)

Pr(R) = Smz(R)

Question

Which Polish groups satisfy Galvin–Mycielski–Solovay Theorem?

Theorem (Kysiak 2000, Fremlin 2008, Zindulka 2010)

Pr(G) = Smz(G) for every locally compact group G.
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Miller–Steprāns questions revisited

Questions

1 Is it consistent to have a compact group G such that covG > eq?

2 Is it true that for any infinite compact group G we have covG > eq?

Theorem

covG = nonPr(G) = eq for every locally compact group G.

Proof.

Only need nonSmz(G) > eq.
Suppose X be compact. There is a continuous mapping f : 2ω → X onto X.
It is of course uniformly continuous, so
non(Smz(X)) > non(Smz(2ω)) = eq.

Question

Which Polish groups satisfy Galvin–Mycielski–Solovay Theorem?
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Hard work
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GMS Theorem for non-locally compact groups?

Definition

G is GMS if Pr(G) = Smz(G) in ZFC.

Definition

G is weakly GMS if for every closed nowhere dense M ⊆ G there is a
〈εn : n ∈ ω〉 ∀〈Un : n ∈ ω〉 such that diamUn < εn there is a g ∈ G such that
(g ·

⋃
n∈ω Un) ∩M is not dense in M .

Theorem

Every Polish GMS group is weakly GMS.

Theorem (cov(M)=c)

If G is Polish and not weakly GMS, then Pr(G) 6= Smz(G).
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GMS Theorem for non-locally compact groups may fail

Theorem

The group Zω is not weakly GMS.

Theorem

Consistently, Pr(Zω) 6= Smz(Zω).

Remark (Borel Conjecture)

Consistently, Pr(G) = Smz(G) for all Polish groups.
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Third question revisited

Question

Is it true that for every non-discrete Polish group G we have
covG = eq or covG = covM?

Question rephrased

Is it true that for every non-locally compact Polish group G we have
nonPr(G) = covM?

Theorem

A CLI Polish group is either locally compact, or else contains a uniform copy of
ωω.

Corollary

nonPr(G) = nonSmz(G) = covM for every non-locally compact CLI Polish
group G.
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Last question revisited

Definition

Let α be an action of a Polish group G on a Polish space X. Let

Pr(α) = {A ⊆ G : ∀M ∈M α(A×M) 6= X}

Question

Let αn be the natural action of the isometry group on Rn. Is it true that
nonPr(αm) = nonPr(αn) for all m,n?

Theorem

If α is an action of a σ-compact Polish group G on a Polish space, then
Smz(G) ⊆ Pr(α). Consequently nonPr(α) > eq.

Corollary (Answer to the question)

Yes, and they are all equal to eq.
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Two mysteries

Theorem

The group Zω is not weakly GMS.

Question

Is is true that no Polish non-locally compact group is weakly GMS?

Corollary

nonPr(G) = nonSmz(G) = covM for every non-locally compact CLI Polish
group G.

Question

Can one drop the CLI assumption?
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