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Resolvability of abstract density topologies in Rn generated by lower or almost lower density operators

Resolvability

Definition (1943, E. Hewitt)

A topological space (X , τ) is resolvable if it contains two disjoint
dense subsets.

Definition

Let α be an arbitrary cardinal number greater than one.
We say that a space (X , τ) is α-resolvable if there is a family of
α-many pairwise disjoint dense sets each of which intersects each
nonempty open subsets of X in at least α points.

4(X , τ) := min{card(A) : A ∈ τ ∧ A 6= ∅}

Definition

(X , τ) is maximally resolvable if it is 4(X , τ)-resolvable.
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Maximal resolvability

Theorem (W.W.Comfort, S. Garcia-Ferreira)

If a Hausdorff space without isolated points is locally compact or
metrizable then it is maximally resolvable.
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Extraresolvability

Definition

(X , τ) is extraresolvable if there exists a family M of dense subsets
of X such that

card(M) > 4(X , τ)

and for every C ,D ∈M, C 6= D, the set C ∩ D is nowhere dense.
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J. Hejduk, R. Wiertelak,
On the abstract density topologies genereted by lower and almost lower density operators
Traditional and present-day topics in real analysis,  Lódź University Press, 2013.

Let X be a nonempty set, S be a σ-algebra of sets from X and
I ⊂ S be a proper σ-ideal.

Definition

We say that an operator Φ : S → S is a lower density operator on
a measurable space (X ,S, I) if
(i) Φ(∅) = ∅ , Φ(X ) = X ;
(ii) ∀A,B∈S Φ(A ∩ B) = Φ(A) ∩ Φ(B);
(iii) ∀A,B∈S (A4 B ∈ I ⇒ Φ(A) = Φ(B));
(iv) ∀A∈S A4 Φ(A) ∈ I.
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Abstract density topologies

Definition

We say that a topology τ is an abstract density topology on X
if there exists a lower density operator Φ on (X ,S, I) such that

τ = TΦ,

where TΦ := {A ∈ S : A ⊂ Φ(A)}.
Topology TΦ is called generated by a lower density operator on
(X ,S, I).

Theorem

Let Φ be a lower density operator on (X ,S, I).
Then the family TΦ is a topology on X if and only if the pair
(S, I) has the hull property.
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Abstract density topologies generated by LD

density topology - O.Haupt, C.Pauc (1952)

I-density topology - W.Poreda, E.Wagner-Bojakowska, W.Wilczyński
(1985)

topology involving measure and category - W.Wojdowski (1989)

< s >-density topology with respect to category - J.Hejduk, G.H. (2003)

< s >-density topology with respect to measure - M.Filipczak, J.Hejduk
(2004), G.H. (2011)

< s >- simple density topology with respect to category - V.Aversa,
W.Wilczyński (2004)

density topology related to category with respect to a sequence tending
to zero - R.Wiertelak (2006)

ΨI- density topology - E. Lazarow, A.Vizvary (2010)

category ψ-density topology - W.Wojdowski, W.Wilczyński (2011)



Resolvability of abstract density topologies in Rn generated by lower or almost lower density operators

Abstract density topologies generated by LD

density topology - O.Haupt, C.Pauc (1952)

I-density topology - W.Poreda, E.Wagner-Bojakowska, W.Wilczyński
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(1985)

topology involving measure and category - W.Wojdowski (1989)

< s >-density topology with respect to category - J.Hejduk, G.H. (2003)

< s >-density topology with respect to measure - M.Filipczak, J.Hejduk
(2004), G.H. (2011)

< s >- simple density topology with respect to category - V.Aversa,
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(1985)

topology involving measure and category - W.Wojdowski (1989)

< s >-density topology with respect to category - J.Hejduk, G.H. (2003)

< s >-density topology with respect to measure - M.Filipczak, J.Hejduk
(2004), G.H. (2011)

< s >- simple density topology with respect to category - V.Aversa,
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Abstract density topologies

Definition

We say that an operator Φ : S → 2X is an almost lower density
operator on a measurable space (X ,S, I) if
(i) Φ(∅) = ∅ , Φ(X ) = X ;
(ii) ∀A,B∈S Φ(A ∩ B) = Φ(A) ∩ Φ(B);
(iii) ∀A,B∈S (A4B ∈ I ⇒ Φ(A) = Φ(B));
(iv-a) ∀A∈S Φ(A)\A ∈ I.

Theorem

Let Φ be an almost lower density operator on (X ,S, I).
If the pair (S, I) has the hull property, then the family
TΦ = {A ∈ S : A ⊂ Φ(A)} is a topology on X .

In this case we say that topology TΦ is generated by the almost
lower density operator on (X ,S, I).
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Abstract density topologies generated by ALD

ψ-density topology - M.Terepeta, E.Wagner-Bojakowska (1999)

density topology with respect to the O’Malley points - W.Poreda,
W.Wilczyński (2001)

density topology with respect to measure and category - J.Hejduk (2002)

simple density topology - V.Aversa, W.Wilczyński (2004)

complete density topology - W.Wilczyński, W.Wojdowski (2007)

topologies connected with Hausdorff measures - G.H. (2008)

f -density topology - M.Filipczak, T.Filipczak (2008)

f -symmetrical density topology - J.Hejduk (2008)

topology in the aspect of measure with respect to a sequence tending to
zero - J.Hejduk, R.Wiertelak (2012)
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complete density topology - W.Wilczyński, W.Wojdowski (2007)
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(Rn,S, I) (Rn, TΦ)-generated by ALD

(A ∈ TΦ ∧ A 6= ∅) ⇒ A /∈ I

Theorem

If every set A ∈ S \ I contains a perfect set ...

I - Borel and S = Bor4I (I = N ∩K)
(L,N )
(B,K)
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(Rn,S, I) (Rn, TΦ)-generated by ALD
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then
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every Bernstein set is dense in (Rn, TΦ).
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Maximal resolvability

There exists a partition of Rn into continuum many Bernstein sets.

Theorem

Any topological space (Rn, TΦ), where TΦ is a topology generated
by ALD on (Rn,S, I) with a property that every A ∈ S \ I
contains a perfect set, is maximally resolvable.

J. Luukkainen - density topology on R
E. Wagner-Bojakowska - I-density topology on R
G.H. - ψ-density topology on R
D. Rose, B. Thurston - lower density spaces on R
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Extraresolvability

Under MA in Rn there exists a family of cardinality 2c almost
disjoint Bernstein sets.

Theorem

(ZFC+MA) Any topological space (Rn, TΦ), where TΦ is a
topology generated by ALD on (Rn,S, I) with a property that
every A ∈ S \ I contains a perfect set, is extraresolvable.

(ZFC+MA)

A. Bella - density topology on R

E. Wagner-Bojakowska - I-density topology on R

G.H. - ψ-density topology on R

D. Rose, B. Thurston - lower density spaces on R

T. Natkaniec, The density topology can be not extraresolvable Real
Anal. Exchange 30(1) (2004-2005).
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Extraresolvability - negative results for LD

Theorem

There exists a model of ZFC in which the space (Rn, TΦ), where
TΦ is a topology generated by a lower density operator on
(Rn,L,N ) or on (Rn,B,K), is not extraresolvable.

ZFC+CPA (Covering Property Axiom) and an additional assumption:
2ω1 = ω2.

Consequences of CPA:

c = ω2

cf (N ) = ω1

cf (I) := min{card(I0) : I0 ⊂ I ∧ ∀J∈I ∃J0∈I0 J ⊂ J0}

cf (I) = ω1

NWDTΦ
= I
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?

Does a model of ZFC exist in which the space (Rn, TΦ), where TΦ

is a topology generated by an almost lower density operator on
(Rn,L,N ) or on (Rn,B,K), is not extraresolvable?
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