Periodic points of some maps of Jordan domains

Peter Mali¢ky
Matej Bel University, Banskd Bystrica
Slovakia

28th Summer School on Real Function Theory
Stara Lesna
August 31 - September 5, 2014

Peter Malicky Periodic points



Let D be a closed domain in the plain the boundary of which
consists of three arcs a, b and c.
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Consider a partition D = Dy U Dy given by an arc d. Let
G : D — D be a continuous map for which

e G(ag) =a= G(a1),
e G(b) ={Po},
e G(p) =b=G(a),



Consider a partition D = Dy U Dy given by an arc d. Let
G : D — D be a continuous map for which

e G(ag) =a= G(a1),

e G(b) ={Po},

e G(q) =b=G(a),

e G is injective on Dy \ b and Dy,



Consider a partition D = Dy U Dy given by an arc d. Let
G : D — D be a continuous map for which

e G(ag) =a= G(a1),

G(b) = {Po},

G(e) =b=G(a),

G is injective on Dy \ b and Dy,
G(Do\ b) =D\ {Py} and G(D;) = D.



Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)2, xy).
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In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points.
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Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points. This map leaves the
plane triangle A = {(x,y) : 0 < x, 0 <y, x+y <4} invariant.
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Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points. This map leaves the
plane triangle A = {(x,y) : 0 < x, 0 <y, x+y <4} invariant.
Balibrea, Garcia Guirao, Lampart and Llibre studied the map
defined by

F:A— A, (x,y)— (x(4—x—y), xy),
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Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points. This map leaves the
plane triangle A = {(x,y) : 0 < x, 0 <y, x+y <4} invariant.
Balibrea, Garcia Guirao, Lampart and Llibre studied the map
defined by

F:A— A, (x,y)— (x(4—x—y), xy),

which is conjugate with the map of Sharkovskii via the conjugation
H:(Xay)’_) (4—X—y,X).
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Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points. This map leaves the
plane triangle A = {(x,y) : 0 < x, 0 <y, x+y <4} invariant.
Balibrea, Garcia Guirao, Lampart and Llibre studied the map
defined by

F:AHA, (X,)/) = (X(4_X_y)> X)/) )
which is conjugate with the map of Sharkovskii via the conjugation

H:(x,y)— (4—x—y,x). In 2006 they published a paper in
which an interior periodic point with period 4 was found
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Problem to be solved Notations and preliminaries
Lower periodic points

History of the problem

In 1993 A. N. Sharkovskil formulated some problems concerning
the properties of the plain map (x,y) — ((y — 2)?, xy). One of the
questions was about interior periodic points. This map leaves the
plane triangle A = {(x,y) : 0 < x, 0 <y, x+y <4} invariant.
Balibrea, Garcia Guirao, Lampart and Llibre studied the map
defined by

F:AHA, (X,)/) = (X(4_X_y)> X)/) )
which is conjugate with the map of Sharkovskii via the conjugation
H:(x,y)— (4—x—y,x). In 2006 they published a paper in

which an interior periodic point with period 4 was found and it was
proved that there are no such points with period 2 and 3.
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Relationship between lower and interior periodic points

Theorem (Mali¢ky 2012)

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same period and itinerary,
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Relationship between lower and interior periodic points

Theorem (Mali¢ky 2012)

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same period and itinerary,

where the itinerary is considered with respect to the sets A; and
Ar.

0.4

(2.2)

AL

Ar

(0,0) (2,0) (4,0)
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Let G : D — D be a continuous map for which
e G(ap) =a= G(a1),

G(b) = {Po},

G(c) = b= G(c1),

G is injective on Dg \ b and Dy,

G(Do\ b) =D\ {Py} and G(D;) = D.

We are interested in periodic points of the map G.



Problem to be solved

Let G : D — D be a continuous map for which
e G(ap) =a= G(a1),
G(b) = {Po},
G(Co) =b= G(Cl),
G is injective on Dg \ b and Dy,
G(Do \ b) =D\ {Py} and G(D1) = D.
We are interested in periodic points of the map G. It is easy to see
that periodic points lying on the arc a exist.



Problem to be solved Notations and preliminaries
Lower periodic points

Itinerary

For a periodic point P of the map G we consider its itinerary W as
a sequence (w;)?2, defined by

~_Jo ifG'(P) € Dy,
"1 if G/(P)eDy.
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Problem to be solved Notations and preliminaries
Lower periodic points

Itinerary

For a periodic point P of the map G we consider its itinerary W as
a sequence (w;)?2, defined by

~_Jo ifG'(P) € Dy,

"1 if G/(P)eDy.

For any periodic itinerary W there is a periodic point P € a of the
map G with the itinerary W.
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Problem to be solved Notations and preliminaries
Lower periodic points

Itinerary

For a periodic point P of the map G we consider its itinerary W as
a sequence (w;)?2, defined by

~_Jo ifG'(P) € Dy,

"1 if G/(P)eDy.

For any periodic itinerary W there is a periodic point P € a of the
map G with the itinerary W. Such a point need not be unique.
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Problem to be solved Notations and preliminaries
Lower periodic points

Saddle point

Let U C R? be open and P = (xg, yo) € U be a fixed point of the
map G:U— Rz? (Xay) = (gl(X7}/),g2(X,y))-
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Problem to be solved Notations and preliminaries
Lower periodic points

Saddle point

Let U C R? be open and P = (xg, yo) € U be a fixed point of the
map G : U — R?, (x,y) — (g1(x,y),g(x,y)). P is said to be a
saddle fixed point of the map F if the Jacobi matrix

%8 (x0,50)  %(x0,%0)
%2 (x0,50) %2 (%0, %0)
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Lower periodic points

Saddle point

Let U C R? be open and P = (xg, yo) € U be a fixed point of the
map G : U — R?, (x,y) — (g1(x,y),g(x,y)). P is said to be a
saddle fixed point of the map F if the Jacobi matrix

%8 (x0,50)  %(x0,%0)
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has eigenvalues A; »
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Problem to be solved Notations and preliminaries
Lower periodic points

Saddle point

Let U C R? be open and P = (xg, yo) € U be a fixed point of the
map G : U — R?, (x,y) — (g1(x,y),g(x,y)). P is said to be a
saddle fixed point of the map F if the Jacobi matrix

( %8 (x0,50)  %(x0,%0) )

be 2 (x0,¥0) 22 (x0, %0)

has eigenvalues A1 > with

‘)\1| <l ’)\2‘ .
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Saddle point

7N

Now assume that A= U U a, where U is an open subset and
aC Bd(U)is an arc, G : A— R? is a continuous map,

P = (x0,y0) € a is a fixed point of G, G(UN V) C U,

G(an V) C a and for some neighbourhood V of P. We want to
define the notion of saddle fixed point.
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Saddle point

P is said to be a saddle fixed point of G if there exist

e a neighbourhood W of P,

e />0,

e a homeomorphism H: AN W — (—6,0) x (0,9) and

e amap G:(—3,6) x (0,0) = B2, (x,y) = (B1(x,¥). Bo(x,¥))
such that

e H(P)=(0,0),

e G(H(Q)) = H(G(Q)) forall Qe ANW N G AN W),

e g(x,0) =0 for all x € (—6,0),

e |g1(x,0)| > |x] for all x € (—0,0), x # 0,



Saddle point

P is said to be a saddle fixed point of G if there exist
e a neighbourhood W of P,
e />0,
e a homeomorphism H: AN W — (—6,0) x (0,9) and
e amap G:(—3,6) x (0,0) = B2, (x,y) = (B1(x,¥). Bo(x,¥))
such that
H(P) = (0,0),
G(H(Q)) = H(G(Q)) forall Qe ANW N G AN W),
g2(x,0) =0 for all x € (=9, 9),
lg1(x,0)| > |x| for all x € (—4,0), x #0,
0 < @(x,y) <y forall x € (=6,6), y € (0,9).
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Consider a partition D = Dy U Dy given by an arc d. Let
G : D — D be a continuous map for which

e G(ag) =a= G(a1),

G(b) = {Po},
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G is injective on Dy \ b and Dy,
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Problem to be solved Notations and preliminaries
Lower periodic points

Main result
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Let P € a, P = Py be a periodic point of the map G with period n
such that

e P is a saddle fixed point of the map G",

e P is a unique periodic point on the arc a with its itinerary.
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Main result

Let P € a, P = Py be a periodic point of the map G with period n
such that
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e P is a unique periodic point on the arc a with its itinerary.
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Problem to be solved Notations and preliminaries
Lower periodic points

Main result

Theorem
Let P € a, P = Py be a periodic point of the map G with period n
such that

e P s a saddle fixed point of the map G",

e P is a unique periodic point on the arc a with its itinerary.

Then there is a periodic point Q € Int D with the same period and
itinerary.

V.
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Problem to be solved Notations and preliminaries
Lower periodic points

Jacobi matrix

Let P = (x0,0) € A be a fixed point of the map F". In this case
P= (4sin2 2i‘%,O).
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Problem to be solved Notations and preliminaries
Lower periodic points

Jacobi matrix

Let P = (x0,0) € A be a fixed point of the map F". In this case
P = (4sin® 2i‘%,O). Then the Jacobi matrix of the map F” at
the point P has a form

F2"
< A1 M ) _ n—1 .
0 XM 0 Ho 4 sin? 22,,27;
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Problem to be solved Notations and preliminaries
Lower periodic points

Classification

For A> we have the possibilities

Saddle point

_ L))
0< <1, eg xg=4sin %

v

Nonhyperbolic point

X =1 eg xo= 4 sin? 1”—5

v

Repulsive point

— +02 3w
1< A, eg xo=4sin" %

A\

All above points (xp, 0) have period 4.
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Problem to be solved Notations and preliminaries
Lower periodic points

Classification

Saddle point

Lower periodic points with period n and 0 < Ap < 1 appear for all
n>4.

Nonhyperbolic point

Lower periodic points with period n and A\, = 1 appear for
infinitely many n, e.g. n=4-3'-5 wherei >0, j > 0.

Repulsive point

Lower periodic points with period n and 1 < A\ appear for all
n>1.
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Modifications

Modifications

Assume that for any x € (0, 4) we have an increasing
homeomorphism ¢, of the interval (0, 4 — x) onto itself.
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Modifications

Modifications

Assume that for any x € (0, 4) we have an increasing
homeomorphism ¢, of the interval (0, 4 — x) onto itself. Moreover
let the function ¢(x,y) = ¢x(y) be continuous in the domain

A={(xy):0<x<4,0<y<4—x}.
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Modifications

Modifications

To obtain such above family ¢y, choose for 0 < x < 4 a family of
increasing homeomorphisms v of the interval (0, 1) such that the
function ¥(x, y) = ¥x(y) is continuous in (0,4) x (0, 1)
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Modifications
Modifications

To obtain such above family ¢y, choose for 0 < x < 4 a family of
increasing homeomorphisms v of the interval (0, 1) such that the
function ¥(x, y) = ¥x(y) is continuous in (0,4) x (0, 1) and put

gox(y>=<4—x)wx< 4 )

4—x
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Modifications

Modifications

It is natural to put ¢4(0)=0.
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Modifications

Modifications

It is natural to put ¢4(0)=0. On the other hand we assume
nothing about existence and properties of the limit

lim ox(y).

x—0
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Modifications
Modifications

Let G : A — A be defined by

(0,0) if x = 0,
(x(4 — x — px(y)), xpx(y)) otherwise .

G(X7y) = {

Peter Malicky Periodic points



Modifications
Modifications

Let G : A — A be defined by

(0,0) if x = 0,
(x(4 — x — px(y)), xpx(y)) otherwise .

G(X7y) = {

Then G is called a modified Lotka—Volterra map.
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Modifications

Modifications

All such modifications have properties
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Modifications

Modifications

All such modifications have properties

e G is continuous on A
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Modifications

Modifications

All such modifications have properties
e G is continuous on A
° G(AL) =A= G(AR)
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Modifications

Modifications

All such modifications have properties
e G is continuous on A
e G(A) =A=G(AR)
e G restricted to AL and Ag is invertible
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Modifications

Modifications

All such modifications have properties
e G is continuous on A
G(AL) =A=G(AR)
G restricted to A; and Apg is invertible

G restricted to the lower side is a logistic map.
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Modifications

Formula for A,

We have . .
Yo = [[ x5 (0) = T] x¢5,(0) .
i=0 i=0
or equivalently
n—1 n—1
_ 4 _ oY
A2—’1;[0X18 (Xlao)—gxfa (XHO)7
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Modifications

Formula for A,

We have . .
Yo = [[ x5 (0) = T] x¢5,(0) .
i=0 i=0
or equivalently
n—1 n—1
_ © _ oY
A2—’1;[0X18 (X,',O) Irgxfay(xlao)v

where ¢(x, y) = px(y) and
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Modifications
Formula for A,

We have . .
Xo = [[ 9, (0) = T w5, (0)
i=0 i=0

or equivalently

where o(x,y) = ox(y) and ¥(x, y) = Px(y).
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(i) Let 0 < <2 and wg(y) =ay + (1 — a)y?. Then we obtain
pxly) = oy + 155



(i) Let 0 < a <2 and ¥x(y) = ay + (1 — a)y?. Then we obtain
1—a)y?
pxly) = ay + 472
. 2y+x2—1/y+x2
(i) Let i(y) = V2PVl

Then we obtain

V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2

exly) = \/2+x2—\/1+x2




(i) Let 0 < a <2 and ¥x(y) = ay + (1 — a)y?. Then we obtain
1—a)y?
pxly) = ay + 472
. 2y+x2—1/y+x2
(i) Let i(y) = V2PVl

Then we obtain

V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2

ox(y) = \/2 n X2 N

(iii) Let ¥x(y) = /¥- Then px(y) = /(4 — x)y.



(i) Let 0 < a <2 and ¥x(y) = ay + (1 — a)y?. Then we obtain
N2
pxly) = oy + 155

(i) Let ¥x(y) = —”\/2%:22:\/7 ”1)::;2 . Then we obtain

V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2

exly) = \/2+x2 V14 x2

(iii) Let ¥x(y) = VY- Then ox(y) = /(4 — x)y.
(iv) Let ¢x(y) = y*. Then ox(y) = (4 — x) (ﬁy



Modifications

Modification (i)

Let 0 <a<2and G: A — A be defined by

G(x,y) = {(0’0) (1-a)y? (1-a)y? " z.h
(x (4 —X—ay — Txy) , X (ay + Txy)) otherwise
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Modifications

Modification (i)

Let 0 <a<2and G: A — A be defined by

G (0,0) ifx =4,
(x,y) = (x (4—x—ay—%),x(ay+%)) otherwise
In this case _
)\2 = Oén)\2 .
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Modifications

Modification (i)

Let 0 <a<2and G: A — A be defined by

G (0,0) ifx =4,
(x,y) = (x (4—x—ay—%),x(ay+%)) otherwise
In this case _
)\2 = Oén)\2 .

e If 0 < a < 1/3 then G has interior periodic points for all
periodic itineraries, because all lower fixed points of G" are
saddle fixed points.
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Modifications

Modification (i)

Let 0 <a<2and G: A — A be defined by

G(x,y) = {(0’0) (1-a)y? (1-a)y? " z.h
(x (4 —X—ay — Txy) , X (ay + Txy)) otherwise

In this case _
X =a"X.

e If 0 < a < 1/3 then G has interior periodic points for all
periodic itineraries, because all lower fixed points of G" are
saddle fixed points.

o If & =1/3 then (3,0) is not lower saddle fixed point of G and
there is no interior fixed point of G lying in Ag. The other
lower fixed points of G" are saddle points for any n > 1.
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Modifications

Modification (i)

e If0< < y/1+4/V/17 = 1.1847437... then

P = (4sin® £, 0) is a saddle fixed point of G*.
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Modifications

Modification (i)

e If0< < y/1+4/V/17 = 1.1847437... then
P = (4sin® £, 0) is a saddle fixed point of G*.

o If {/14+4/V/17 < a <2 then P = (45|n2 1“7,0) is not a

saddle fixed point of G*.
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Modifications

Modifications (ii) and (iii)

Let

G(x,y) = (x(4 = x = px(¥)), xpx(¥))
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Modifications

Modifications (ii) and (iii)

G(x,y) = (x(4 = x = px(¥)), xpx(¥))

\/2y — x) + x?(4 —/y(4 — x) + x2(4 — x)2
\/2+x2 V1+x2
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Modifications

Modifications (ii) and (iii)

G(x,y) = (x(4 = x = px(¥)), xpx(¥))

where

() = V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2
oY \/2+x2 Vit
or

ex(y) =V (4 —x)y .
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Modifications

Modifications (ii) and (iii)

Let
G(x,y) = (x(4 = x = x(¥)), xex(¥))
where
V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2
ox(y) = \/2+X2_\/1+X2

ex(y) =V (4 —x)y .

Then all lower fixed points different from (0,0) of the map G" are
repulsive.
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Modifications

Modifications (ii) and (iii)

Let
G(x,y) = (x(4 = x = x(¥)), xex(¥))
where
V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2
ox(y) = \/2+X2_\/1+X2

ex(y) =V (4 —x)y .

Then all lower fixed points different from (0,0) of the map G" are
repulsive. In the case (ii)

- 2+1\"
)\2><\[2+ ) >1.
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Modifications

Modifications (ii) and (iii)

Let
G(x,y) = (x(4 = x = x(¥)), xex(¥))
where
V2y(4 — x) + x2(4 —/y(4 — x) + x2(4 — x)2
ox(y) = \/2+X2_\/1+X2

ex(y) =V (4 —x)y .

Then all lower fixed points different from (0,0) of the map G" are
repulsive. In the case (ii)

- 2+1\"
)\2><\[2+ ) >1.

In the case (iii) the map G is not differentiable on the lower side.
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

y X
«(y) = (4— .
== (%)
Let P = (x0,0) # (0,0) be a fixed point of the map F" (and G" as

: _ F 2 kw
well). In this case P = (4S|n @,O)
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

y X
«(y) = (4— .
== (%)
Let P = (x0,0) # (0,0) be a fixed point of the map F" (and G" as

n—1 .
well). In this case P = (Llsin2 %,O) and \p = [] 4sin? 247
i=0

PLES
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Modifications

Modification (iv)

Let

Cix ):{(0,0) if x € {0,4}
Y (x(4 — x — px(¥)),xpx(y)) otherwise ,

where

)= (-2 (7).

4 —x
Let P = (xp,0) # (0,0) be a fixed point of the map F" (and G" as

n—1 .
well). In this case P = (Llsin2 %,O) and Ay = [ 4sin® Zk% |f
i=0

PLES
A2 > 1 then P is a repulsive fixed point of F"
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Modifications

Modification (iv)

Let

Cix ):{(0,0) if x € {0,4}
Y (x(4 — x — px(¥)),xpx(y)) otherwise ,

where

)= (-2 (7).

4 —x
Let P = (xp,0) # (0,0) be a fixed point of the map F" (and G" as

n—1 .
well). In this case P = (Llsin2 %,O) and Ay = [ 4sin® Zk% |f
i=0

PLES
A2 > 1 then P is a repulsive fixed point of F" and a saddle fixed
point of G"
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

)= (-2 (7).

4 —x
Let P = (x0,0) # (0,0) be a fixed point of the map F" (and G" as

n—1 .
well). In this case P = (Llsin2 %,O) and Ay = [ 4sin® Zk% |f
i=0

PLES
A2 > 1 then P is a repulsive fixed point of F" and a saddle fixed

point of G" and there exists an interior fixed point of G” with the
same period and itinerary.
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

y X
(y) = (4 — .
o) = 4= (72)
Let P = (xp,0) # (0,0) be a fixed point of the map F" (and G" as
n—1 :
well). In this case P = (llsin2 %,O) and Xy = [ 4sin® 4% If
i=0

A2 > 1 then P is a repulsive fixed point of F" and a saddle fixed
point of G" and there exists an interior fixed point of G” with the
same period and itinerary. If Ay < 1 then P is a saddle fixed point
of F"
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

y X
(y) = (4 — .
o) = 4= (72)
Let P = (xp,0) # (0,0) be a fixed point of the map F" (and G" as
n—1 :
well). In this case P = (llsin2 %,O) and Xy = [ 4sin® 4% If
i=0

A2 > 1 then P is a repulsive fixed point of F" and a saddle fixed
point of G" and there exists an interior fixed point of G” with the
same period and itinerary. If Ay < 1 then P is a saddle fixed point
of F" and a repulsive fixed point of G".
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Modifications

Modification (iv)

Let

(0,0) if x € {0,4}
(x(4 — x — px(¥)),xpx(y)) otherwise ,

G(Xay) = {

where

y X
(y) = (4 — .
o) = 4= (72)
Let P = (xp,0) # (0,0) be a fixed point of the map F" (and G" as
n—1 :
well). In this case P = (llsin2 %,O) and Xy = [ 4sin® 4% If
i=0

A2 > 1 then P is a repulsive fixed point of F" and a saddle fixed
point of G" and there exists an interior fixed point of G” with the
same period and itinerary. If Ay < 1 then P is a saddle fixed point
of F™ and a repulsive fixed point of G". What about A\ =17
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