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Cone metric spaces

Definition.

Let E be a real Banach space and K C E. K is called a cone iff:
(/) K is closed, nonempty and K # {0};

(i) ifa, b€ER, a, b>0, x, y € K, then ax + by € K;

(iii) if x € K and —x € K, then x = 0.

Jakub Klima Cantor's intersection theorem for cone metric spaces
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Let E be a real Banach space and K C E. K is called a cone iff:
(/) K is closed, nonempty and K # {0};

(i) ifa, b€ER, a, b>0, x, y € K, then ax + by € K;

(iii) if x € K and —x € K, then x = 0.

A cone metric space is a pair (X, d), where X is a nonempty set
and d : X x X — E satisfies three well-known axioms of a metric
with respect to the following partial ordering < in E: x < y iff
y—x€K.
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Cone metric spaces

Let E be a real Banach space and K C E. K is called a cone iff:
(/) K is closed, nonempty and K # {0};

(i) ifa, b€ER, a, b>0, x, y € K, then ax + by € K;

(iii) if x € K and —x € K, then x = 0.

A cone metric space is a pair (X, d), where X is a nonempty set
and d : X x X — E satisfies three well-known axioms of a metric
with respect to the following partial ordering < in E: x < y iff
y—x€K.

Let E=R" and K = {x € R" : x; > 0}. A function
d: XxX—=R"(d=(di,...,dp)) is a cone metric iff {d1,...,dn}
is a separating family of pseudometrics.
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Convergence

In the sequel we consider cones with a nonempty interior and
a< bmeans b—a € intK.
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Convergence

In the sequel we consider cones with a nonempty interior and
a< bmeans b—a € intK.

Definition.

We say that a sequence (x,) of elements of X is convergent to

x € X if for any 0 < c, there exists k € N such that d(x,,x) < ¢
for all n > k, and x is called the limit of (x,). Similarly, we define
Cauchy sequence. Then the completeness of (X, d) is understood
in an analogous way as in the case of real-valued metric.
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Definition.

We say that a sequence (x,) of elements of X is convergent to

x € X if for any 0 < c, there exists k € N such that d(x,,x) < ¢
for all n > k, and x is called the limit of (x,). Similarly, we define
Cauchy sequence. Then the completeness of (X, d) is understood
in an analogous way as in the case of real-valued metric.

Definition.

We say that a set A C X is closed if it contains all of its limit
points.

Jakub Klima Cantor's intersection theorem for cone metric spaces



Convergence

In the sequel we consider cones with a nonempty interior and
a< bmeans b—acintK.

Definition.

We say that a sequence (x,) of elements of X is convergent to

x € X if for any 0 < c, there exists k € N such that d(x,,x) < ¢
for all n > k, and x is called the limit of (x,). Similarly, we define
Cauchy sequence. Then the completeness of (X, d) is understood
in an analogous way as in the case of real-valued metric.

Definition.

We say that a set A C X is closed if it contains all of its limit
points.

Definition.

B(xo,r) :={y € X:d(x0,y) <r}, xo € X,r € K.
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Convergence

In the sequel we consider cones with a nonempty interior and
a< bmeans b—acintK.

Definition.

We say that a sequence (x,) of elements of X is convergent to

x € X if for any 0 < ¢, there exists k € N such that d(x,,x) < ¢
for all n > k, and x is called the limit of (x,). Similarly, we define
Cauchy sequence. Then the completeness of (X, d) is understood
in an analogous way as in the case of real-valued metric.

Definition.

We say that a set A C X is closed if it contains all of its limit
points.

Definition.

B(xo,r) :={y € X:d(x0,y) <r}, xo € X,r € K.

It is easy to show that B(xp, r) is a closed set.
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Definition.

A nonempty set A C E is called bounded from above if there exists
¢ € E such that x < ¢, for all x € A.
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Definition.

A nonempty set A C E is called bounded from above if there exists
¢ € E such that x < ¢, for all x € A.

4

Definition.

A cone K is called strongly minihedral if every set which is
bounded from above has a supremum.
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A nonempty set A C E is called bounded from above if there exists
¢ € E such that x < ¢, for all x € A.

A cone K is called strongly minihedral if every set which is
bounded from above has a supremum.

A nonempty set B C X is called bounded if there exists c € K
such that d(x,y) <, for all x,y € B. A vector c is called a

bound of B.

A
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A nonempty set A C E is called bounded from above if there exists
¢ € E such that x < ¢, for all x € A.

A cone K is called strongly minihedral if every set which is
bounded from above has a supremum.

A nonempty set B C X is called bounded if there exists c € K
such that d(x,y) <, for all x,y € B. A vector c is called a

bound of B.

Let B be a subset of X. The diameter of B is the vector
d(B) :=sup{d(x,y): x,y € B} (if it exists).

N
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Cantor’s intersection theorem
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Cantor’s intersection theorem

Theorem (S. H. Alnafei, S. Radenovi¢, N. Shahzad; 2011).

A cone metric space (X, d) over a strongly minihedral cone K is
complete iff every decreasing sequence (A,) of nonempty closed

sets with §(Ap) Ll 0, has nonempty intersection.
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Cantor’s intersection theorem

Theorem (S. H. Alnafei, S. Radenovi¢, N. Shahzad; 2011).

A cone metric space (X, d) over a strongly minihedral cone K is
complete iff every decreasing sequence (A,) of nonempty closed

sets with 0(A,) — Ll — 0, has nonempty intersection.

Theorem

Let (X, d) be a cone metric space. The following statements are
equivalent:

(/) X is complete;
(ii) every decreasing sequence (A,) of nonempty closed sets such

that every A, has a bound ¢, € K and ¢, — il — 0, has a

nonempty intersection;

(iii) every decreasing sequence ((B(xn, rn)) of closed balls with
Rl

— 0, has a nonempty intersection.
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Banach'’s fixed point theorem
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Banach's fixed point theorem

Theorem.

Let K be a cone in a Banach space E and A : E — E be a linear
bounded operator, which is monotone, i.e., a < b implies Aa < Ab
for a,b € K. Let (X, d) be a complete cone metric space and

T : X — X be such that

d(Tx, Ty) < A(d(x,y)) for all x,y € X.
If lim H/\”H% < 1, then T has a unique fixed point x, and for any
n—oo

xo € X, % = lim T"xg.
n—o0o
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Remarks

Remark 1.

We can prove Banach's fixed point theorem using Cantor’s

intersection theorem in a similar way as in real-valued metric

spaces:

(i) We consider sets A, := {x € X : d(x, Tx) < ic}.

(i) The sequence (A,) satisfies all the asumptions of Cantor’s
intersection theorem (the proof that the sets A, are closed is
different from the one in real-valued metric case).

(iii) There exists unique x, € (] An and Tx, = X;.
neN
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Remarks

Remark 2
It can happen that x, — x and y, — y but

d(xn, yn) —> Wl d(x,y), so a cone metric d need not be a continuous
function.
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Remarks

Remark 2
It can happen that x, — x and y, — y but

d(xn, yn) —> Wl d(x,y), so a cone metric d need not be a continuous
function.

Example. Let E = C(Y[0, 1] with the norm ||x|| = ||l + [|X'|co,
K ={x€ E:x(t) >0, forall t € [0,1]}. We define a cone metric
d:KxK—=K,

0, X=y
X+y, x#y

d(x,y) = {

Consider x,(t) := 1+5'" (") x(t) = ya(t) = y(t) = 0, then

Xp — X, Yn — Y, bUt d(Xn)yn) M d(va)
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