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Microperiodic multifunctions

Let (X,-) be a topological group. A function f : X — Y is called microperiodic if
there exists a dense subset P of X such that

f(px) = f(x), xER,peP.
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Microperiodic multifunctions

Let (X,-) be a topological group. A function f : X — Y is called microperiodic if
there exists a dense subset P of X such that

f(px) = f(x), xER,peP.

Proposition 1

Let (X, -) be a topological group, P dense subset of X. If f : X — R satisfying
f(p) < F(x),  xEX,peP, (m)

is continuous at some xg € X, then it is constant.
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Microperiodic multifunctions

Definition 1

Let (X,-) be a topological group. A function f : X — Y is called microperiodic if
there exists a dense subset P of X such that

f(px) = f(x), xER,peP.

Proposition 1

Let (X, -) be a topological group, P dense subset of X. If f : X — R satisfying
f(p) < F(x),  xEX,peP, (m)

is continuous at some xg € X, then it is constant.

Definition 2

Let (X, ) be a topological group. We say that a multifunction F : X — 2Y is
microperiodic if there exists a dense subset P of X such that

F(px) C F(x), xeX,peP. (M)
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Microperiodic multifunctions Continuit \pproximately microperiodic multifunctions

Let (X,-) be a topological group. A function f : X — Y is called microperiodic if
there exists a dense subset P of X such that

f(px) = f(x), xER,peP.

Proposition 1

Let (X, -) be a topological group, P dense subset of X. If f : X — R satisfying
f(p) < F(x),  xEX,peP, (m)

is continuous at some xg € X, then it is constant.

Definition 2

Let (X, ) be a topological group. We say that a multifunction F : X — 2Y is
microperiodic if there exists a dense subset P of X such that

F(px) C F(x), xeX,peP. (M)

Let A, B C Y. Multifunction F : R — 2Y of the form

[ A forxeQqQ,
F(X)—{ B forxgQ

is microperiodic.
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Let X, Y be topological spaces, F : X — 2Y.
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,

m F is continuous at xp if it is upper and lower semicontinuous at this point.
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,

m F is continuous at xp if it is upper and lower semicontinuous at this point.

If (Y,d) is a metric space, A,B C Y, define
e(A, B) :=sup{d(a,B) : a€ A},
h(A, B) := max{e(A, B),e(B,A)},
where d(a, B) := inf{d(a, b),b € B}.
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,

m F is continuous at xp if it is upper and lower semicontinuous at this point.

If (Y,d) is a metric space, A,B C Y, define
e(A, B) :=sup{d(a,B) : a€ A},
h(A, B) := max{e(A, B),e(B,A)},
where d(a, B) := inf{d(a, b),b € B}.

Let X be a topological space, (Y, d) is a metric space, F : X — P(Y),

m F is h-upper semicontinuous (h-usc) at xp € X if x — e(F(x), F(xo)) is
continuous at xp,
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,

m F is continuous at xp if it is upper and lower semicontinuous at this point.

If (Y,d) is a metric space, A,B C Y, define
e(A, B) :=sup{d(a,B) : a€ A},
h(A, B) := max{e(A, B),e(B,A)},
where d(a, B) := inf{d(a, b),b € B}.

Let X be a topological space, (Y, d) is a metric space, F : X — P(Y),
m F is h-upper semicontinuous (h-usc) at xp € X if x — e(F(x), F(xo)) is
continuous at xp,

m F is h-lower semicontinuous (h-Isc) at xg if x — e(F(x0), F(x)) is continuous at
X0,
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Let X, Y be topological spaces, F : X — 2Y.

m F is upper semicontinuous (usc) at xp € X if for every open set V C Y such that
F(x0) C V there exists U € N(xp) such that F(x) C V for every x € U,

m F is lower semicontinuous (Isc) at xp € X if for every open set V C Y such that
F(x0) NV # 0 there exists U € N(xp) such that F(x) NV # @ for every x € U,

m F is continuous at xp if it is upper and lower semicontinuous at this point.

If (Y,d) is a metric space, A,B C Y, define
e(A, B) :=sup{d(a,B) : a€ A},
h(A, B) := max{e(A, B),e(B,A)},
where d(a, B) := inf{d(a, b),b € B}.

Let X be a topological space, (Y, d) is a metric space, F : X — P(Y),

m F is h-upper semicontinuous (h-usc) at xp € X if x — e(F(x), F(xo)) is
continuous at xp,

m F is h-lower semicontinuous (h-Isc) at xg if x — e(F(x0), F(x)) is continuous at
X0,

m F is h-continuous at xp if it is h-usc and h-Isc at xp.
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Continuity

F(x) = { o5 e

(0
(0,1) for x € Q,
(0, )\ {3} forx¢Q

0,1 for x € Q,
F3(X):{ <[@m][0,1] for x & Q
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Continuity

F(x) = { o5 e

(0
(0,1) for x € Q,
(0, )\ {3} forx¢Q

0,1 for x € Q,
F3(X):{ <[@m][0,1] for x & Q

h(Fi(x), Fi(y)) =0, x,y €R
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Continuity

0,1 for x € Q,
Fi(x) = { EO, 1]) fgrx ; Q

(0,1) for x € Q,
A ={ 0\ 111 frxgo

0,1 for x € Q,
F3(X):{ <[@m][0,1] for x & Q

h(Fi(x), Fi(y)) =0, x,y €R

m each F; is h-continuous on R
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Continuity

Fi(x) = { [0,1] forx € Q,

(0,1) forx¢Q

(0,1) for x € Q,
A ={ 0\ 111 frxgo

0,1 for x ,
Fs(x) = { ([@ﬁ][O,l] for x ; %

h(Fi(x), Fi(y)) =0, x,y €R

m each F; is h-continuous on R

m each F; islscon R
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Continuity

F(x) = { o5 e

(0
(0,1) for x € Q,
(0, )\ {3} forx¢Q

1] for x € Q,
F3(X):{Qm[0,1] fﬁiim

h(Fi(x), Fi(y)) =0, x,y €R

m each F; is h-continuous on R
m each F; islscon R

m each F; is usc only on Q
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Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.
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Microperiodic multifunctior Continuity leasurabilit \pproximately microperiodic multifuncti

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
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Microperiodic multifunctior Continuity leasurabilit \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
f(x) < f(px), xe X, pe P
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Microperiodic multifunctior Continuity leasurabilit \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
f(x) < f(px), xe X, pe P

f is continuous at xp
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
f(x) < f(px), xe X, pe P
f is continuous at xp

B f is constant, therefore e(F(xp), F(x)) = f(x) = f(x0) = e(F(x0), F(x0)) = O for
xeX
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
f(x) < f(px), xe X, pe P
f is continuous at xp

B f is constant, therefore e(F(xp), F(x)) = f(x) = f(x0) = e(F(x0), F(x0)) = O for
xeX

F(x0) C F(x), x € X
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
f(x) < f(px), xe X, pe P
f is continuous at xp

B f is constant, therefore e(F(xp), F(x)) = f(x) = f(x0) = e(F(x0), F(x0)) = O for
xeX

F(x0) C F(x), x € X
A g(x):= e(F(x), F(x0)), x € X
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Let X be a topological group, Y a metric space, F : X — P(Y) a microperiodic
multifunction. If F is h-continuous at some xp, then the multifunction F is constant.

Define f(x) := e(F(x0), F(x)), x € X
F(x) < F(px), x € X, p € P
f is continuous at xp

f is constant, therefore e(F(xp), F(x)) = f(x) = f(x0) = e(F(x0), F(x0)) = 0 for
xeX

F(x0) C F(x), x € X
g(x) = e(F(x), F(x0)), x € X
F(x) C F(x0) C F(x)

OENR

B =
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Theorem 2

Assume that X is a topological group, Y a normed space, F : X — Pg(Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.
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ultifunctio Continuity

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.
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Microperiodic multifunctior Continuity leasurabilit

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

Proof.

y* cy*
fy(x) = a(y*, F(x)) = sup{(y*,y) : ¥y € F(x)}, x € X
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Microperiodic multifunctior Continuity leasurabilit

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

y* c Y*

fx(x) :=o(y*, F(x)) =sup{(y*,y): y € F(x)}, xe X
f, is continuous at xp
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Microperiodic multifunctior Continuity t \pproximately microperiodic multifunctions

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

yrevr

fy=(x) == o(y*, F(x)) = sup{(y*,y) : ¥y € F(x)}, x € X
f,« is continuous at xp

A f(px) < fx(x), x € X, pe P
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Microperiodic multifunctior Continuity t \pproximately microperiodic multifunctions

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

yrevr

fy=(x) == o(y*, F(x)) = sup{(y*,y) : ¥y € F(x)}, x € X
f,« is continuous at xp

A f(px) < fx(x), x € X, pe P

f = is constant
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

yreyr

f-(x) = o(y*, F(x)) = sup{(y*,) : y € F(x)}, x € X
f, is continuous at xp

B f-(px) < £ (x), x€ X, pe P

f = is constant

A o(y*, F(x)) = a(y*, F(x)) for x € X
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Microperiodic multifunctior Continuity \pproximately microperiodic multifunctions

Theorem 2

Assume that X is a topological group, Y a normed space, F : X — P (Y) is a
microperiodic multifunction. If F is Isc at xo and usc at xo (Y endowed with the weak
topology), then it is constant.

yreyr

f-(x) = o(y*, F(x)) = sup{(y*,) : y € F(x)}, x € X
f, is continuous at xp

B f-(px) < £ (x), x€ X, pe P

f = is constant

A o(y*, F(x)) = a(y*, F(x)) for x € X

by the separation theorem F(x) = F(xp), x € X
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Theorem 3

Assume that X is a topological group, Y a topological space, F : X — P(Y) a
microperiodic multifunction with open values. If F is usc on some open neighborhood
of xp, then it is constant.

Jolanta Olko

Institute of Mathematics, Pedagogical Uniwersity of Cracow

On microperiodic multifunctions



Measurability




Measurability

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y
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Measurability

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.
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Measurability

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P
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Measurability

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P

m F is microperiodic
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Measurability

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P

m F is microperiodic

m F strongly measurable iff P € M
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Microperiodic multifunctions Continuit Measurability \pproximately microperiodic multifunctions

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P

m F is microperiodic

m F strongly measurable iff P € M

Example 3

Let f : R — R be an additive function with small graph (i.e. card f(R) = Ng).
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Microperiodic multifunctions Continuit Measurability \pproximately microperiodic multifunctions

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P

m F is microperiodic

m F strongly measurable iff P € M

Example 3

Let f : R — R be an additive function with small graph (i.e. card f(R) = Ng).
Assume that C € P(R) such that d(0, C) > 0.

Jolanta Olko Institute of Mathematics, Pedagogical Uniwersity of Cracow

On microperiodic multifunctions



Microperiodic multifunctions Continuit Measurability \pproximately microperiodic multifunctions

Let (X, M) be a measurable space, (Y, d) a separable metric space, F : X — 2"

m F is weakly measurable (measurable for short) if the lower inverse image
F=(U) :={x € X : F(x)N C # 0} is measurable for every open set U C Y

m F is strongly measurable if the lower inverse image
F~(C):={x€e X: F(x)N C # 0} is measurable for every closed set C C Y

Example 2

Let A,B C Y, P C X is dense and for every p € P the following condition holds
px € P, forx € P and px € X\ P, forx e X\ P.

[ A forx€eP,
F(X)—{ B forxeX\P

m F is microperiodic

m F strongly measurable iff P € M

Example 3

Let f : R — R be an additive function with small graph (i.e. card f(R) = Ng).
Assume that C € P(R) such that d(0, C) > 0.

F(x) = |f(x)] - C = {|f(x)| -c: c€C}, x€R
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Theorem 4

Let X be a topological group, (Y,d) a separable metric space, P a dense subset of X.
Assume that X is locally compact (of the second category, respectively),
F : X — P(Y) is H-measurable (B-measurable) satysfying one of the conditions

(i) F is microperiodic multifunction,
(ii) P is countable and F(px) C F(x) a.e. for every p € P.

Then F is constant a.e..
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Theorem 4

Let X be a topological group, (Y,d) a separable metric space, P a dense subset of X.
Assume that X is locally compact (of the second category, respectively),
F : X — P(Y) is H-measurable (B-measurable) satysfying one of the conditions

(i) F is microperiodic multifunction,
(ii) P is countable and F(px) C F(x) a.e. for every p € P.

Then F is constant a.e..

Theorem 5

Let I C R be a nontrivial interval, P a dense subset of R. If F : | — P(R) is
L-measurable (B-measurable, respectively) and there exists E € Ly (E € By) such that

F(x+ p) C F(x) forevery x € I\ E,p € P such that x+p € I,

then F is constant a.e..
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Proposition 2 (Theorem 2 in [5

Assume that X is a topological group, P C X a dense set, (Y, d) is a metric space.
Lete >0 and let f : X — Y satisfies

d(f(px),f(x)) <e, xe€X,peP.
If f is continuous at some xg, then

d(f(x), f(x0)) < &, x € X.

Institute of Mathematics, Pedagogical Uniwersity of Cracow




periodic multifunctior Continuit Approximately microperiodic multifunctions

Proposition 2 (Theorem 2 in [5

Assume that X is a topological group, P C X a dense set, (Y, d) is a metric space.
Lete >0 and let f : X — Y satisfies

d(f(px),f(x)) <e, xe€X,peP.
If f is continuous at some xg, then
d(f(x), f(x0)) <&, x€X.

Assume that X is a topological group, P C X a dense set, Y is a metric space. Let
€ >0 and let F: X — P(Y) satisfies

e(F(x), F(px)) <, xEX,p€EP. 1)
If F is h-continuous at some xg, then
h(F(x), F(x0)) < &, x € X.
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Corollary 1

Assume that X is a topological group, P C X a dense set, Y is a normed space. Let
C C Y and let F : X — P(Y) satisfies

F(px) C F(x)+ C, x€eX,peP.

If F is h-continuous at some xo and there exists yo € Y and € > 0 such that
C C yo+ €S (S is the closed unit ball in Y), then

h(F(x), F(x0)) < llyoll +&,  x€X.
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Corollary 1

Assume that X is a topological group, P C X a dense set, Y is a normed space. Let
C C Y and let F: X — P(Y) satisfies

F(px) C F(x)+ C, x€eX,peP.

If F is h-continuous at some xo and there exists yo € Y and € > 0 such that
C C yo+ €S (S is the closed unit ball in Y), then

h(F(x), F(x0)) < llyoll +&,  x€X.

Corollary 2

Assume that X is a topological group, P C X a dense set, Y is a normed space. Let
C C Y and let f : X — Y satisfies

f(px) € f(x)+ C, xeX,peP.

If f is continuous at some xo and there exists yo € Y and € > 0 such that
C C yo + &S (S is the closed unit ball in Y), then

If() = fOo)ll < vl +&,  xeX.
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