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Abstract

Measurable fuzzy sets, i. e. [0,1]-valued measurable functions,
equipped with suitable algebraic structures and a convergence of
sequences, model fuzzy random events. We give a classification
scheme for classes of [0,1]-valued functions related to various
properties of the model of fuzzy probability and discuss some
applications.
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Why real functions in probability theory?

C(lassical) P(robability) T(heory)

random events: measurable sets and set (logical) operations -
can be represented via indicator functions and the
corresponding (Boolean sum and product, negation)
operations on functions;

a (reduced) σ-field A of subsets of a set X , A ∈ A,
χA ⊆ {0, 1}X , χA(x) = 1 for x ∈ A and χA(x) = 0 otherwise;

(countable) operations: union (or), intersection (and),
complement (negation);

probability measure: a normed σ-additive function
P : A −→ [0, 1];

random variable: a measurable function f : X −→ R
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Why real functions in probability theory?

F(uzzy) P(robability) T(heory)

fuzzy random events: the structured set M(A) of all
measurable functions ranging in [0, 1] (suitable MV-algebras);

operations on fuzzy random events:  Lukasiewicz operations;

A and M(A) ...  Lukasiewicz tribes, D-posets of fuzzy sets

D-poset ... (X ,≤, 0, 1,	)

fuzzy observable ... sequentially continuous D-homomorphism
of M(A) into M(B)

state ...
∫

(.)dp, p is a probability measure on A, (.) ∈M(A)
(states: exactly sequentially continuous D-homomorphisms)

REMARK. For T = {∅, {a}}, M(T) ≡ [0, 1], hence a state is
a fuzzy observable into [0, 1].
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Basic notions

Fuzzy set ... a [0,1]-valued function on a set X , u ∈ [0, 1]X

D-poset of fuzzy sets ... X ⊆ [0, 1]X such that

pointwise partial order;

0X , 1X ∈ X ;

if u, v ∈ X and v ≤ u, then u − v ∈ X (pointwise);

partial operation 	: u 	 v is defined as u − v iff v ≤ u;

introduced by F. Kôpka and F. Chovanec
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Bold algebra ... a system X ⊆ [0, 1]X of fuzzy sets equipped with
 Lukasiewicz operations
(u ⊕ v)(x) = min{u(x) + v(x), 1}, x ∈ X ,
(u � v)(x) = max{u(x) + v(x)− 1, 0}, x ∈ X ,
uc(x) = 1− u(x), x ∈ X .

REMARK. Bold algebras generalize fields of subsets:
χA∪B(x) = min{χA(x) + χB(x), 1}, x ∈ X ;
χA∩B(x) = max{χA(x) + χB(x)− 1, 0}, x ∈ X ;
χc
X\A(x) = 1− χA(x), x ∈ X .

Roman Frič, Václav Sǩrivánek Real functions in generalized probability



Recently, B. Riečan has developed IF-probability based on special
fuzzy sets, cf.

B. Riečan: Analysis of fuzzy logic models. In: Intelligent Systems
(ed. V. M. Koleshko), In Tech, Rijeka 2012, 219–244.

Let X be a set. An IF -subset of X is a pair A = (µA, νA), where
µA, νA are fuzzy subsets of X (called the membership and
nonmembership functions of A, respectively) and µA + νA ≤ 1X .
Clearly, for νA = 1X − µA, (µA, νA) can be considered as a fuzzy
subset of X . Measurable IF -subsets form generalized random
events in the IF -probability.
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Pairs of fuzzy sets lead to products of D-posets and special models
within the fuzzy probability theory.
Let X ⊆ IX and Y ⊆ IY be D-posets of fuzzy sets. Let Z ⊆ IZ be
their product. Then Z consists of all pairs (u, v), u ∈ X , v ∈ Y,
where the partial order, difference, convergence is defined
coordinatewise, and Z is the disjoint union of X and Y (their
coproduct in the category of sets and maps). Each w = (u, v) can
be visualized as a function on Z , where u and v are “disjoinly
glued” to form w .

If X is a bold algebra, then X × X denotes the corresponding
power bold algebra. In particular, if X =M(A), then
M(A)×M(A) carries the usual coordinatevise  Lukasiewicz
operations: ⊕,� and complementation.
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Recall that a D-poset is a partially ordered set equipped with a
partial operation “difference”. D-poset structure preserving maps
as morphisms play a fundamental role in generalized probability,
e.g., classical probability measures are exactly sequentially
continuous D-homomorphisms on a σ-field into [0,1].
On the other hand, bold algebras (modeling fuzzy random events)
are in terms of “addition” and “complementation”. We introduce
a new structure based on “addition” which leads to a better
understanding of the transition from D-posets to bold algebras and
the transition from the CPT to the FPT.
REMERK. Each bold algebra can be reorganized into a D-poset
(indirect).
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Bold algebras and l-groups

Let X be a set and let G ⊆ XR be an l-group (lattice group) of
bounded real functions on X such that 1X ∈ G . Then

XG = {u ∈ G ; 0X ≤ u ≤ 1X} equipped with the  Lukasiewicz
operations
(u ⊕ v)(x) = min{u(x) + v(x), 1}, x ∈ X ,
(u � v)(x) = max{u(x) + v(x)− 1, 0}, x ∈ X ,
uc(x) = 1− u(x), x ∈ X ,
is a bold algebra and all bold algebras are of this type.

REMARK. Like in fields of sets, the operation � can be redefined
in terms of ⊕ and (.)c : u � v = (uc ⊕ v c)c .
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A-posets

An A-poset is a system S = (S ,≤, 0, 1,⊕) consisting of a partially
ordered set S with the least element 0, the greatest element 1 and
a partial binary operation ⊕ satisfying the following conditions:

(A1) If a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a;

(A2) If (a⊕ b)⊕ c is defined, then a⊕ (b ⊕ c) is defined and
(a⊕ b)⊕ c = a⊕ (b ⊕ c);

(A3) For each a ∈ S there exists a unique b ∈ S such that
a⊕ b = 1;

(A4) If a⊕ b is defined, a1 ≤ a and b1 ≤ b, then a1 ⊕ b1 is defined
and a1 ⊕ b1 ≤ a⊕ b.

The element b ∈ S from axiom (A3) is called the complement of
a and it is denoted as ac .
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Remarks

a⊕ 0 = a, for all a ∈ S

(A4) is equivalent to (a⊕ b is defined iff a ≤ bc)

A-posets and D-posets are equivalent

GENERALIZATIONS

in (A3), the complement need not be unique

leave out the top element and (A3)

simplex-type probability domains
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Classification scheme

A-posets;

IA-posets ... A-posets with enough states;

bold algebras ... lattice IA-posets;

 Lukasiewicz tribes ... sequentially closed lattice IA-posets;

generated  Lukasiewicz tribes (M(A)) ... divisible detto.
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Convex combinations

Let X1, X2, ..., Xn, n > 1, be ID-posets and let
X = X1 ×X2 × ...×Xn be their product. Let hi : Xi −→ I ,
i = 1, 2, ..., n, be sequentially continuous D-homomorphisms and
let αi ∈ I , i = 1, 2, ..., n,

∑n
i=1 αi = 1. For

u = (u1, u2, ..., un) ∈ X , put h(u) =
∑n

i=1 αihi (ui ) and denote
h =

∑n
i=1 αihi the resulting map. Then h is said to be a convex

combination of h1, h2, ..., hn.

Lemma

h is a sequentially continuous D-homomorphism.
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Roman Frič, Václav Sǩrivánek Real functions in generalized probability
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