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Abstract

Various systems of [0,1]-valued functions model generalized
random events and generalized probability measures. A problem
related to the extension of generalized probability measures (the
existence of certain epireflection) given in

J. Havĺıčková: Real functions and the extension of generalized
probability measures. Tatra Mt. Math. Publ. 55 (2013),85–94.

has been recently solved by R. Frič. We show that the solution
leads to a better understanding of IF-probability (developed by B.
Riečan) and its relationship to fuzzy probability.
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Preliminaries

Denote I the closed unit interval [0,1]. Let X be a set. Then fuzzy
subsets on X are maps of X into I . We identify a subset A ⊆ X
and its indicator function χA (where χA(x) = 1 for x ∈ A and
χA(x) = 0 otherwise). If A is a σ-algebra of subsets of X , then
M(A) will denote the A-measurable fuzzy subsets of X .
Recall that
ID-poset ... a system X ⊆ IX of fuzzy subsets of X carrying a
D-poset structure: X is partially ordered (coordinatewise order),
0X , 1X ∈ X , if u, v ∈ X and v ≤ u, then u − v ∈ X ; X is called a
D-poset of fuzzy sets
ID ... the category of ID-posets and sequentially continuous (with
respect to the coordinatewise convergence of sequences) maps
preserving the D-poset structure
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BID and CGBID

bold algebra ... a system X ⊆ IX of fuzzy subsets of X such that
0X , 1X ∈ X and X is closed with respect to the  Lukasiewicz
operations ⊕, �, “complement”: if u, v ∈ X , then
(u ⊕ v)(x) = min{u(x) + v(x), 1},
(u � v)(x) = max{u(x) + v(x)− 1, 0},
uc(x) = 1− u(x), x ∈ X

Bold algebras generalize Boolean algebras.

BID ... the category of bold algebras as objects and sequentially
continuous D-homomorphisms as morphisms

CGBID ... the full subcategory of BID, the objects are bold
algebras of the form M(A); if X is a one-point set {a}, then A is
a trivial σ-algebra T = {∅, {a}} and M(T) = I {a} = [0, 1]
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Morphisms

Let A be a σ-algebra of subsets of X and let p be a probability
measure on A. For f ∈M(A) put h(f ) =

∫
f dp and denote h the

resulting map. Recall that
(i) h is a morphism (i.e. a sequentially continuous map preserving
the D-poset structure).
(ii) If h :M(A) −→ [0, 1] is a morphism, then there is a unique
probability measure p on A such that h(f ) =

∫
f dp, f ∈M(A).

fuzzy probability ... fuzzy random events are of the form M(A)
and fuzzy probability measures are integrals
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From BID to CGBID

Let X0 ⊆ IX be a bold algebra and let X be the smallest
sequentially closed subset of IX containing X0 (X is a bold
algebra). Then there is a unique σ-algebra AX of subsets of X
such that AX ⊆ X ⊆M(AX ). If, moreover, X contains all
constant functions cX , c ∈ [0, 1], then X =M(AX ).

Recently has been proved that CGBIG is an epireflective
subcategory of BID (M(AX ) is the epireflection of X0).

R. Frič: On D-posets of fuzzy sets. Math.Slovaca 64 (2014),
545–554.

This solves a problem posed in

J. Havĺıčková: Real functions and the extension of generalized
probability measures. Tatra Mt. Math. Publ. 55 (2013),85–94.
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IF probability

IF set ... a pair (u, v), where u, v are fuzzy subsets of X such that
u(x) + v(x) ≤ 1 for all x ∈ X

IF sets have been intrudoced by K. T. Atanassov as a
generalization of fuzzy sets. Probability on IF events has been
developed by B. Riečan. IF events (suitable pairs of fuzzy sets)
can be modeled via powers of a bold algebra. Basic notions of the
IF probability have been outlined in the preceding talk.
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Products

Let X ⊆ IX and Y ⊆ IY be D-posets of fuzzy sets, i.e., objects of
ID. Let Z ⊆ IZ be their product in ID. Then Z consists of all
pairs (u, v), u ∈ X , v ∈ Y, where the ID-structure (partial order,
difference, convergence) is defined coordinatewise, and Z is the
disjoint union of X and Y (their coproduct in the category of sets
and maps). Each w = (u, v) can be visualized as a function on Z ,
where u and v are “disjoinly glued” to form w .

If Y is a bold algebra, then Y × Y denotes the corresponding
power bold algebra.

Jana Havĺıčková Extending generalized probability measures II



Powers

Let X0 ⊆ IX be a bold algebra, let X ⊆ IX be the the smallest
sequentially closed bold algebra containing X0, and let AX be the
unique σ-algebra of subsets of X such that AX ⊆ X ⊆M(AX ).
Pairs (u, v) ∈M(AX )×M(AX ) are fuzzy random events “related
to” IF random events. The power bold algebra M(AX )×M(AX )
carries the usual coordinatevise  Lukasiewicz operations: ⊕,� and
complementation. Denote

A(X0 ×X0) = {(u, v) ∈ X0 ×X0; u ≤ v}

and

A(M(AX )×M(AX )) = {(u, v) ∈M(AX )×M(AX ); u ≤ v}.

Clearly, both A(X0 ×X0) and A(M(AX )×M(AX )) are closed
with respect to the  Lukasiewicz operations ⊕ and �, but are not
closed with respect to the complementation.
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Complementation

THEOREM 1. Let X0 ⊆ IX be a bold algebra. Then X0 ×X0 is
the smallest bold algebra containing A(X0 ×X0).

Proof. Assume that (u, v) ∈ X0 ×X0. Then (u, 1X ) ∈ A(X0 ×X0)
and (0X , 1X − v) ∈ A(X0 ×X0). Since (1X , v) is the complement
of (0X , 1X − v) and (u, v) = (u, 1X ) ∧ (1X , v), (u, v) belongs to
each bold algebra containing A(X0 ×X0) and the assertion follows.

Observe that Theorem 1 yields a one-to-one correspondence
between objects of the form A(X0 ×X0) and the bold algebras of
the form X0 ×X0 and M(AX )×M(AX ), respectively.
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Problem

PROBLEM. Consider a category A, the objects of which are of the
form A(X0 ×X0), and the category category B, the objects of
which are of the form X0 ×X0. Having in mind relationships
between the IF probability and the fuzzy probability, is it possible
to define morphisms of A and B in a nontrivial way so that A and
B are isomorphic?

Let X0 ⊆ IX , Y0 ⊆ IY be bold algebras and let h be a sequentially
continuous D-homomorphismm on X0 into Y0. For
(u, v) ∈ A(X0 ×X0) define h(u, v) = (h(u), h(v)). It is easy to see
that h(u, v) ∈ A(Y0 × Y0). Denote h the resulting map on
A(X0 ×X0) into A(Y0 × Y0).
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Solution

LEMMA 2. (i) h preserves the order and the  Lukasiewicz
operations: ⊕,�.
(ii) h is sequentially continuous.

Denote A the category having systems A(X0 ×X0) as objects and
maps h as morphisms. Further denote BID2 the category having
systems X0×X0 as objects and maps of the type h as morphisms.

THEOREM 3. The categories A and BID2 are isomorphic.

Moreover, as stated on the previous talk, states on
A(M(AX )×M(AX )) and sequentially continuous
D-homomorphisms on M(AX )×M(AX ) into I (states in the
Fuzzy Probability Theory) are in one-to-one correspondence.
Consequently, the IF-probability can be studied within FPT.
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The category of products

In order to prove additional properties of powers of bold algebras,
we embed BID2 into the following category BID2 of products:

(i) The objects are ordered pairs (X ,Y), where X ⊆ [0, 1]X and
Y ⊆ [0, 1]Y are bold algebras and the operations are defined
coordinatewise;

(ii) The morphisms are ordered pairs (f , g) of sequentially
continuous D-homomorphisms and the composition is parallel:

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1)

whenever the compositions f2 ◦ f1 and g2 ◦ g1 are defined.
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Epireflection

THEOREM 4. Let X0 ⊆ IX and Y0 ⊆ IY be bold algebras. Let
X ⊆ IX , resp. Y ⊆ IY , be the smallest sequentially closed bold
algebra containing X0, resp. Y0. Then M(AX )×M(AY) is the
epireflection of X0 × Y0 into the subcategory CGBID of BID.

Hint of proof.

(i) Let h be a sequentially continuous D-homomorphisms on
X0 × Y0 into M(A). We have to prove that h can be
uniquely extended to a sequentially continuous
D-homomorphisms on M(AX )×M(AY) into M(A);

(ii) Let Z be the disjoint union of X and Y and let Z0 ⊆ IZ be
the corresponding “disjoint union” of X0 and Y0. Then we
can identify M(AZ) and M(AX )×M(AY).

(iii) Finally, (i) follows from the fact that M(AZ) is the
epireflection of X0 × Y0 into CGBID.

Jana Havĺıčková Extending generalized probability measures II



Generalized probability theories within FPT:

COROLLARY 5. The epireflector sending objects of BID into
CGBID is productive.

COROLLARY 6. Let X0 ⊆ IX be a bold algebra and let h be a
sequentially continuous D-homomorphismm on X0 into I . Then h
can be uniquely extended to a sequentially continuous
D-homomorphisms on M(AX )×M(AX ) into I .

This and the next theorem leads to two generalized probability
theories which can be studied within FPT: one besed on BID2 and
the other based on BID2.
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States

Let X0 ⊆ IX and Y0 ⊆ IY be bold algebras. Let g , h be
sequentially continuous D-homomorphisms on X0, resp. on Y0,
into I = [0, 1] and let a ∈ [0, 1]. For (u, v) ∈ X0 × Y0 put
(ag + (1− a)h)((u, v)) = ag(u) + (1− a)h(v) and denote
ag + (1− a)h the resulting map. It will be called a convex
combination of g and h. The proof of the next lemma is
straightforward and it is omitted.

LEMMA 7. ag + (1− a)h is a sequentially continuous
D-homomorphism.

THEOREM 8. Let X0 ⊆ IX and Y0 ⊆ IY be bold algebras. Then
the sequentially continuous D-homomorphisms on X0 × Y0 into I
are exactly the convex combinations of two sequentially continuous
D-homomorphisms on X0, resp. on Y0, into I .
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