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Notation

Let D be a closed domain in the plain the boundary of which
consists of three arcs a, b and c .
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Consider a partition D = D0 ∪ D1 given by an arc d . Let
G : D → D be a continuous map for which

• G (a0) = a = G (a1),

• G (b) = {P0},
• G (c0) = b = G (c1),

• G is injective on D0 \ b and D1,

• G (D0 \ b) = D \ {P0} and G (D1) = D.
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History of the problem

In 1993 A. N. Sharkovskǐı formulated some problems concerning
the properties of the plain map (x , y) 7→ ((y − 2)2, xy). One of the
questions was about interior periodic points.

This map leaves the
plane triangle ∆ = { (x , y) : 0 ≤ x , 0 ≤ y , x + y ≤ 4 } invariant.
Balibrea, Garćıa Guirao, Lampart and Llibre studied the map
defined by

F : ∆→ ∆, (x , y) 7→ (x(4− x − y), xy) ,

which is conjugate with the map of Sharkovskǐı via the conjugation
H : (x , y) 7→ (4− x − y , x). In 2006 they published a paper in
which an interior periodic point with period 4 was found and it was
proved that there are no such points with period 2 and 3.
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Peter Maličký Periodic points



Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

History of the problem
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Peter Maličký Periodic points



Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

History of the problem
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Relationship between lower and interior periodic points

Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F n. Then there is
an interior fixed point Q of F n with the same period and itinerary,
where the itinerary is considered with respect to the sets ∆L and
∆R .
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H2,2L
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Let G : D → D be a continuous map for which

• G (a0) = a = G (a1),

• G (b) = {P0},

• G (c0) = b = G (c1),

• G is injective on D0 \ b and D1,

• G (D0 \ b) = D \ {P0} and G (D1) = D.

We are interested in periodic points of the map G . It is easy to see
that periodic points lying on the arc a exist.
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Itinerary

For a periodic point P of the map G we consider its itinerary W as
a sequence (wi )

∞
i=0 defined by

wi =

{
0 if G i (P) ∈ D0,

1 if G i (P) ∈ D1.

For any periodic itinerary W there is a periodic point P ∈ a of the
map G with the itinerary W .

Such a point need not be unique.
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Lower periodic points

Saddle point

Let U ⊂ R2 be open and P = (x0, y0) ∈ U be a fixed point of the
map G : U → R2, (x , y) 7→ (g1(x , y), g2(x , y)). P is said to be a
saddle fixed point of the map F if the Jacobi matrix(

∂g1
∂x (x0, y0) ∂g1

∂y (x0, y0)
∂g2
∂x (x0, y0) ∂g2

∂y (x0, y0)

)

has eigenvalues λ1,2 with

|λ1| < 1 < |λ2| .
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Saddle point

P

U

a

Now assume that A = U ∪ a, where U is an open subset and
a ⊂ Bd(U) is an arc, G : A→ R2 is a continuous map,
P = (x0, y0) ∈ a is a fixed point of G ,

G (U ∩ V ) ⊂ U,
G (a ∩ V ) ⊂ a and for some neighbourhood V of P. We want to
define the notion of saddle fixed point.
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Saddle point

P is said to be a saddle fixed point of G if there exist

• a neighbourhood W of P,

• δ > 0,

• a homeomorphism H : A ∩W → (−δ, δ)× 〈0, δ) and

• a map G̃ : (−δ, δ)× 〈0, δ)→ R2, (x , y) 7→ (g̃1(x , y), g̃2(x , y))

such that

• H(P) = (0, 0),

• G̃ (H(Q)) = H(G (Q)) for all Q ∈ A ∩W ∩ G−1(A ∩W ),

• g̃2(x , 0) = 0 for all x ∈ (−δ, δ),

• |g̃1(x , 0)| > |x | for all x ∈ (−δ, δ), x 6= 0,

• 0 < g̃2(x , y) < y for all x ∈ (−δ, δ), y ∈ (0, δ).
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such that
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• G̃ (H(Q)) = H(G (Q)) for all Q ∈ A ∩W ∩ G−1(A ∩W ),

• g̃2(x , 0) = 0 for all x ∈ (−δ, δ),

• |g̃1(x , 0)| > |x | for all x ∈ (−δ, δ), x 6= 0,

• 0 < g̃2(x , y) < y for all x ∈ (−δ, δ), y ∈ (0, δ).
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Notation

D0

D1

a0 a1

b d

c0

c1

P0

Consider a partition D = D0 ∪ D1 given by an arc d . Let
G : D → D be a continuous map for which

• G (a0) = a = G (a1),

• G (b) = {P0},

• G (c0) = b = G (c1),

• G is injective on D0 \ b and D1,

• G (D0 \ b) = D \ {P0} and G (D1) = D.
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Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

Main result

Theorem

Let P ∈ a, P 6= P0 be a periodic point of the map G with period n
such that

• P is a saddle fixed point of the map Gn,

• P is a unique periodic point on the arc a with its itinerary.

Then there is a periodic point Q ∈ Int D with the same period and
itinerary.
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Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

Jacobi matrix

Let P = (x0, 0) ∈ ∆ be a fixed point of the map F n. In this case

P =
(

4 sin2 kπ
2n±1 , 0

)
. Then the Jacobi matrix of the map F n at

the point P has a form

(
λ1 µ
0 λ2

)
=

 ∓2n µ

0
n−1∏
i=0

4 sin2 2ikπ
2n±1

 .
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Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

Classification

For λ2 we have the possibilities

Saddle point

0 ≤ λ2 < 1, e.g. x0 = 4 sin2 π
17

Nonhyperbolic point

λ2 = 1, e.g. x0 = 4 sin2 π
15

Repulsive point

1 < λ2, e.g. x0 = 4 sin2 3π
17

Remark

All above points (x0, 0) have period 4.
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Problem to be solved
Modifications

Notations and preliminaries
Lower periodic points

Classification

Saddle point

Lower periodic points with period n and 0 < λ2 < 1 appear for all
n ≥ 4.

Nonhyperbolic point

Lower periodic points with period n and λ2 = 1 appear for
infinitely many n, e.g. n = 4 · 3i · 5j , where i ≥ 0, j ≥ 0.

Repulsive point

Lower periodic points with period n and 1 < λ2 appear for all
n ≥ 1.
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Problem to be solved
Modifications

Modifications

Assume that for any x ∈ (0, 4) we have an increasing
homeomorphism ϕx of the interval 〈0, 4− x〉 onto itself. Moreover
let the function ϕ(x , y) = ϕx(y) be continuous in the domain

∆̂ = { (x , y) : 0 < x < 4 , 0 ≤ y ≤ 4− x} .
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Problem to be solved
Modifications

Modifications

To obtain such above family ϕx , choose for 0 < x < 4 a family of
increasing homeomorphisms ψx of the interval 〈0, 1〉 such that the
function ψ(x , y) = ψx(y) is continuous in (0, 4)× 〈0, 1〉 and put

ϕx(y) = (4− x)ψx

(
y

4− x

)
.
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Problem to be solved
Modifications

Modifications

It is natural to put ϕ4(0)=0. On the other hand we assume
nothing about existence and properties of the limit

lim
x→0

ϕx(y).
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Peter Maličký Periodic points



Problem to be solved
Modifications

Modifications

Let G : ∆→ ∆ be defined by

G (x , y) =

{
(0, 0) if x = 0,

(x(4− x − ϕx(y)), xϕx(y)) otherwise .

Then G is called a modified Lotka–Volterra map.
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Problem to be solved
Modifications

Modifications

All such modifications have properties

• G is continuous on ∆

• G (∆L) = ∆ = G (∆R)

• G restricted to ∆̃L and ∆R is invertible

• G restricted to the lower side is a logistic map.
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Peter Maličký Periodic points



Problem to be solved
Modifications

Modifications

All such modifications have properties

• G is continuous on ∆

• G (∆L) = ∆ = G (∆R)

• G restricted to ∆̃L and ∆R is invertible

• G restricted to the lower side is a logistic map.
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Problem to be solved
Modifications

Formula for λ2

We have

λ̃2 =
n−1∏
i=0

xiϕ
′
xi

(0) =
n−1∏
i=0

xiψ
′
xi

(0) ,

or equivalently

λ̃2 =
n−1∏
i=0

xi
∂ϕ

∂y
(xi , 0) =

n−1∏
i=0

xi
∂ψ

∂y
(xi , 0) ,

where ϕ(x , y) = ϕx(y) and

ψ(x , y) = ψx(y).
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(i) Let 0 ≤ α ≤ 2 and ψx(y) = αy + (1− α)y2. Then we obtain

ϕx(y) = αy + (1−α)y2

4−x .

(ii) Let ψx(y) =

√
2y+x2−

√
y+x2

√
2+x2−

√
1+x2

. Then we obtain

ϕx(y) =

√
2y(4− x) + x2(4− x)2 −

√
y(4− x) + x2(4− x)2

√
2 + x2 −

√
1 + x2

.

(iii) Let ψx(y) =
√

y . Then ϕx(y) =
√

(4− x)y .

(iv) Let ψx(y) = y x . Then ϕx(y) = (4− x)
(

y
4−x

)x
.
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Problem to be solved
Modifications

Modification (i)

Let 0 ≤ α ≤ 2 and G : ∆→ ∆ be defined by

G (x , y) =

{
(0, 0) if x = 4,(

x
(

4− x − αy − (1−α)y2

4−x

)
, x
(
αy + (1−α)y2

4−x

))
otherwise .

In this case
λ̃2 = αnλ2 .

• If 0 ≤ α < 1/3 then G has interior periodic points for all
periodic itineraries, because all lower fixed points of Gn are
saddle fixed points.

• If α = 1/3 then (3, 0) is not lower saddle fixed point of G and
there is no interior fixed point of G lying in ∆R . The other
lower fixed points of Gn are saddle points for any n > 1.
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Peter Maličký Periodic points



Problem to be solved
Modifications

Modification (i)

Let 0 ≤ α ≤ 2 and G : ∆→ ∆ be defined by

G (x , y) =

{
(0, 0) if x = 4,(

x
(

4− x − αy − (1−α)y2

4−x

)
, x
(
αy + (1−α)y2

4−x

))
otherwise .

In this case
λ̃2 = αnλ2 .

• If 0 ≤ α < 1/3 then G has interior periodic points for all
periodic itineraries, because all lower fixed points of Gn are
saddle fixed points.

• If α = 1/3 then (3, 0) is not lower saddle fixed point of G and
there is no interior fixed point of G lying in ∆R . The other
lower fixed points of Gn are saddle points for any n > 1.
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Problem to be solved
Modifications

Modification (i)

• If 0 ≤ α < 4

√
1 + 4/

√
17

.
= 1.1847437 . . . then

P =
(
4 sin2 π

17 , 0
)

is a saddle fixed point of G 4.

• If 4

√
1 + 4/

√
17 ≤ α ≤ 2 then P =

(
4 sin2 π

17 , 0
)

is not a

saddle fixed point of G 4.

Peter Maličký Periodic points



Problem to be solved
Modifications

Modification (i)

• If 0 ≤ α < 4

√
1 + 4/

√
17

.
= 1.1847437 . . . then

P =
(
4 sin2 π

17 , 0
)

is a saddle fixed point of G 4.

• If 4

√
1 + 4/

√
17 ≤ α ≤ 2 then P =

(
4 sin2 π

17 , 0
)

is not a

saddle fixed point of G 4.
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Problem to be solved
Modifications

Modifications (ii) and (iii)

Let
G (x , y) = (x(4− x − ϕx(y)), xϕx(y)) ,

where

ϕx(y) =

√
2y(4− x) + x2(4− x)2 −

√
y(4− x) + x2(4− x)2

√
2 + x2 −

√
1 + x2

or
ϕx(y) =

√
(4− x)y .

Then all lower fixed points different from (0, 0) of the map Gn are
repulsive. In the case (ii)

λ̃2 >

(√
2 + 1

2

)n

> 1 .

In the case (iii) the map G is not differentiable on the lower side.
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Modification (iv)

Let

G (x , y) =

{
(0, 0) if x ∈ {0, 4}
(x(4− x − ϕx(y)), xϕx(y)) otherwise ,

where

ϕx(y) = (4− x)

(
y

4− x

)x

.

Let P = (x0, 0) 6= (0, 0) be a fixed point of the map F n (and Gn as

well). In this case P =
(

4 sin2 kπ
2n±1 , 0

)

and λ2 =
n−1∏
i=0

4 sin2 2ikπ
2n±1 . If

λ2 > 1 then P is a repulsive fixed point of F n and a saddle fixed
point of Gn and there exists an interior fixed point of Gn with the
same period and itinerary. If λ2 < 1 then P is a saddle fixed point
of F n and a repulsive fixed point of Gn. What about λ2 = 1?
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