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Miller—Steprans paper

G. . . non-discrete Polish group
X...Polish space

M. . . the ideal of meager sets in X
a. . .action of G on a Polish space X

Definition (Miller—Steprans 2006)

o covg = min{|A|:IM e M A+ M =G}
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Miller—Steprans paper

G. . . non-discrete Polish group
X...Polish space

M. . . the ideal of meager sets in X
a. . .action of G on a Polish space X

Definition (Miller—Steprans 2006)

o covg = min{|A|:IM e M A+ M =G}
@ covy =min{|A|: ACG,IM e M a(Ax M) =X}
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Miller—Steprans paper

o cardinals

@ cov M =min{|F|: F Cw” Vg ew®” 3f € FVn €w f(n) # g(n)}
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Miller—Steprans paper

Two cardinals
o cov M =min{|F|: F Cw” Vg e w” 3f € FVYn €w f(n) # g(n)}
@ ¢q = min{|F| : F C w® bounded, Vg € w* 3f € F Vn € w f(n) # g(n)}
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Miller—Steprans paper

Two cardinals
@ cov M =min{|F|: F Cw” Vg ew®” 3f € FVn €w f(n) # g(n)}
e ¢ = min{|F|: F C w” bounded, Vg € w* 3f € F Vn € w f(n) # g(n)}

Theorem (Miller-Steprans 2006)

o IfG is R™ or a countable product of finite groups then covg = e¢q

o In particular, if G = 2%, then covg = ¢q
e IfG =7, then covg = cov.M
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Miller—Steprans questions

Questions [Miller—Steprans 2006]

@ Is it consistent to have a compact group G such that covg > eq?

@ Is it true that for any infinite compact group G we have covg > eq?

© Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

©Q Let a,, be the natural action if the isometry group on R"”. Is it true that
COVy,, = COVq,, for all m,n?
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Miller—Steprans questions

Questions [Miller—Steprans 2006]

@ Is it consistent to have a compact group G such that covg > eq?

@ Is it true that for any infinite compact group G we have covg > eq?

© Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

©Q Let a,, be the natural action if the isometry group on R"”. Is it true that
COVy,, = COVq,, for all m,n?

Definition

G is CLI if it admits a complete left-invariant metric.
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Miller—Steprans questions

Questions [Miller—Steprans 2006]

@ Is it consistent to have a compact group G such that covg > eq?

@ Is it true that for any infinite compact group G we have covg > eq?

© Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

©Q Let a,, be the natural action if the isometry group on R"”. Is it true that
COVy,, = COVq,, for all m,n?

Definition

G is CLI if it admits a complete left-invariant metric.

Theorem (Dobrowolski—Marciszewski 2008)

If G is a Polish, not locally compact, CLI group (in particular, if G is abelian),
then covg = cov M.
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Strong measure zero

Definition
Pr(G)={ACG:YM e M A+ M # G}.

covg = non Pr(G)
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Strong measure zero

Definition
Pr(G)={ACG:YM e M A+ M # G}.

covg = non Pr(G)

Definition (Borel 1919)

A set A in a separable metric space has strong measure zero if for any
sequence (1, : n € w) of radii there is a sequence (z,, : n € w) such that

{B(zn,rn) : n € w} covers A.

Strong measure zero in separable metric spaces and Polish groups
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Strong measure zero

Definition
Pr(G)={ACG:YM e M A+ M # G}.

covg = non Pr(G)

Definition (Borel 1919)

A set A in a separable metric space has strong measure zero if for any
sequence (1, : n € w) of radii there is a sequence (z,, : n € w) such that
{B(zn,rn) : n € w} covers A.

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) C Smz(G).
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Strong measure zero vs. Prikry sets

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) C Smz(G).

If G is a Polish group, then covg < non Smz(G).
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Strong measure zero vs. Prikry sets

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) C Smz(G).

If G is a Polish group, then covg < non Smz(G).

If G is a Polish group, then cov(M) < covg < e.
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Strong measure zero vs. Prikry sets

Theorem (Prikry 1973)

Let G be a separable group equipped with a left-invariant metric d. Then
Pr(G) C Smz(G).

If G is a Polish group, then covg < non Smz(G).

If G is a Polish group, then cov(M) < covg < e.

o If A ¢ Pr(G), then G is covered by |A|-many translates of a meager set.

e G contains (by the Perfect Set Theorem) a (uniform) copy of the Cantor
space and therefore non(Smz(X)) < non(Smz(2*)).

e non(Smz(2“)) = eq (Bartoszynski 1995) O
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Galvin—Mycielski-Solovay Theorem

Theorem (Galvin—Mycielski-Solovay 1973)
Pr(R) = Smz(R)
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Galvin—Mycielski-Solovay Theorem

Theorem (Galvin—Mycielski-Solovay 1973)
Pr(R) = Smz(R)

Which Polish groups satisfy Galvin—Mycielski—Solovay Theorem?
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[e]e]e]e]e] lelelelelele]e]
Galvin—Mycielski-Solovay Theorem

Theorem (Galvin—Mycielski-Solovay 1973)

Pr(R) = Smz(R)

Which Polish groups satisfy Galvin—Mycielski—Solovay Theorem?

Theorem (Kysiak 2000, Fremlin 2008, Zindulka 2010)

Pr(G) = Smz(G) for every locally compact group G.
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Miller—Steprans questions revisited

Q Is it consistent to have a compact group G such that covg > ¢q?

@ s it true that for any infinite compact group G we have covg > ¢q?
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Miller—Steprans questions revisited

Q Is it consistent to have a compact group G such that covg > ¢q?

@ s it true that for any infinite compact group G we have covg > ¢q?

covg = non Pr(G) = eq for every locally compact group G.
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Miller—Steprans questions revisited

Q Is it consistent to have a compact group G such that covg > ¢q?

@ s it true that for any infinite compact group G we have covg > ¢q?

covg = non Pr(G) = eq for every locally compact group G.

Only need non Smz(G) > eq.
Suppose X be compact. There is a continuous mapping f : 2* — X onto X.
It is of course uniformly continuous, so

non(Smz(X)) > non(Smz(2%)) = eq. O
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Miller—Steprans questions revisited

Q Is it consistent to have a compact group G such that covg > ¢q?

@ s it true that for any infinite compact group G we have covg > ¢q?

covg = non Pr(G) = eq for every locally compact group G.

Only need non Smz(G) > eq.
Suppose X be compact. There is a continuous mapping f : 2* — X onto X.
It is of course uniformly continuous, so

non(Smz(X)) > non(Smz(2%)) = eq. O

Which Polish groups satisfy Galvin—Mycielski—Solovay Theorem?
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Hard work
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GMS Theorem for non-locally compact groups?

Definition
G is GMS if Pr(G) = Smz(G) in ZFC.

Definition

G is weakly GMS if for every closed nowhere dense M C G there is a
(en :n € w) Y(Un : n € w) such that diam U,, < e, there is a g € G such that
(9 U,ecw, Un) N M is not dense in M.
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GMS Theorem for non-locally compact groups?

Definition

G is GMS if Pr(G) = Smz(G) in ZFC.

Definition

G is weakly GMS if for every closed nowhere dense M C G there is a
(en :n € w) Y(Un : n € w) such that diam U,, < e, there is a g € G such that
(9 U,ecw, Un) N M is not dense in M.

Every Polish GMS group is weakly GMS.
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GMS Theorem for non-locally compact groups?

Definition
G is GMS if Pr(G) = Smz(G) in ZFC.

Definition

G is weakly GMS if for every closed nowhere dense M C G there is a
(en :n € w) Y(Un : n € w) such that diam U,, < e, there is a g € G such that
(9 U,ecw, Un) N M is not dense in M.

Every Polish GMS group is weakly GMS.

Theorem (cov(M)=c)
If G is Polish and not weakly GMS, then Pr(G) # Smz(G).
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GMS Theorem for non-locally compact groups may fail

The group Z* is not weakly GMS.
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GMS Theorem for non-locally compact groups may fail

The group Z* is not weakly GMS.

Consistently, Pr(Z*) # Smz(Z*).
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GMS Theorem for non-locally compact groups may fail

The group Z* is not weakly GMS.

Consistently, Pr(Z*) # Smz(Z*).

Remark (Borel Conjecture)

Consistently, Pr(G) = Smz(G) for all Polish groups.
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Third question revisited

Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

Question rephrased

| A

Is it true that for every non-locally compact Polish group G we have
non Pr(G) = cov. M?
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Third question revisited

Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

| A

Question rephrased

Is it true that for every non-locally compact Polish group G we have
non Pr(G) = cov. M?

Theorem

| \

A CLI Polish group is either locally compact, or else contains a uniform copy of
w®.

4
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Third question revisited

Is it true that for every non-discrete Polish group G we have
covg = eq or covg = cov M?

| A

Question rephrased

Is it true that for every non-locally compact Polish group G we have
non Pr(G) = cov. M?

Theorem

| \

A CLI Polish group is either locally compact, or else contains a uniform copy of
w®.

4

non Pr(G) = non Smz(G) = cov M for every non-locally compact CLI Polish
group G.

Ondej Zindulka (with Michael Hrusék and Wolfgang Wohofsky) Strong measure zero in separable metric spaces and Polish groups



000000000000

Last question revisited

Let « be an action of a Polish group G on a Polish space X. Let

Pr(a) ={ACG:VM € M a(Ax M) # X}

4

Let o, be the natural action of the isometry group on R™. Is it true that
non Pr(au,) = non Pr(as,) for all m,n?

A
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Last question revisited

Definition
Let « be an action of a Polish group G on a Polish space X. Let

Pr(a) ={ACG:VM € M a(Ax M) # X}

v

Let o, be the natural action of the isometry group on R™. Is it true that
non Pr(au,) = non Pr(as,) for all m,n?

| A

Theorem

If a is an action of a o-compact Polish group G on a Polish space, then
Smz(G) C Pr(«). Consequently non Pr(a) > eq.

A\
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Last question revisited

Definition

Let « be an action of a Polish group G on a Polish space X. Let
Pr(a) ={ACG:VM € M a(Ax M) # X}

v

Let o, be the natural action of the isometry group on R™. Is it true that
non Pr(au,) = non Pr(as,) for all m,n?

Theorem

| A

If a is an action of a o-compact Polish group G on a Polish space, then
Smz(G) C Pr(«). Consequently non Pr(a) > eq.

A\

Corollary (Answer to the question)

Yes, and they are all equal to eq.
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Two mysteries

The group Z* is not weakly GMS.
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Two mysteries

The group Z* is not weakly GMS.

Is is true that no Polish non-locally compact group is weakly GMS?
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Two mysteries

The group Z* is not weakly GMS.

Is is true that no Polish non-locally compact group is weakly GMS?

non Pr(G) = non Smz(G) = cov.M for every non-locally compact CLI Polish
group G.
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Two mysteries

The group Z* is not weakly GMS.

Is is true that no Polish non-locally compact group is weakly GMS?

non Pr(G) = non Smz(G) = cov.M for every non-locally compact CLI Polish
group G.

Can one drop the CLI assumption?
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