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U-set and M-set Zero-dimensional compact abelian group

U -set and M -set

A set E is said to be U -set for a system of functions (especially for
orthogonal system) if the convergence of a series with respect to this
system to zero outside the set E implies that all coefficients of the series
are zero.

Otherwise the set is called M -set, i.e., a set E is said to be M -set for a
system of functions if there exists a non-trivial series with respect to this
system which converges to zero outside the set E.

This series is called null-series if µE = 0.

A set is called M0-set, or a set of strict multiplicity, if it is an M -set and
the corresponding null-series is a Fourier-Stieltjes series of a probability
measure concentrated on E.

Survey: A. S. Kechris, A. Louveau , Descriptive set theory and the
structure of sets of uniqueness, London Mathematical Society lecture
series 128, Cambridge University Press, 1987.
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Zero-dimensional compact abelian group

Let G be a zero-dimensional compact abelian group.

Topology in such a group can be given by a chain of subgroups

G = G0 ⊃ G1 ⊃ G2... ⊃ Gn ⊃ ...

with 0 =
⋂+∞
n=0Gn.

The subgroups Gn are clopen sets with respect to this topology.

As G is compact the factor group Gn/Gn+1 is finite for each n. Let its
order be pn.

Then the order of G0/G1 is p0, and the order of G0/Gn, n = 1, 2, ..., is

mn := p0 · p1 · ... · pn−1,

with pi ≥ 2 for all i (put m0 := 1).
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Zero-dimensional compact abelian group

Denote by Kn any coset of the subgroup Gn and by Kn(g) the coset of
the subgroup Gn which contains the element g, i.e.,

Kn(g) = g +Gn.

For each g ∈ G the sequence {Kn(g)} is decreasing and

{g} =
⋂
nKn(g).
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Examples

1. Dyadic Cantor group G

The group of sequences of integers of the form x̃ = {xj}∞j=0 where
0 ≤ xj ≤ 1 with group operation defined as component-wise addition
modulo 2 for each component.

Topology is defined by subgroups

Gn = {x̃ ∈ G : xj = 0 for j = 0, ..., n− 1}

2. Vilenkin group G is defined by a sequence of prime numbers
{pj}, pj ≥ 2

Then G is the group of sequences of integers of the form x̃ = {xj}∞j=0

where 0 ≤ xj ≤ pj with group operation defined as component-wise
addition modulo pj for jth component.

Topology is defined by subgroups

Gn = {x̃ ∈ G : xj = 0 for j = 0, ..., n− 1}
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Examples

3. An important example - group of p-adic integers.

The additive group of p-adic integers (with p being a fixed prime
number) is the set of formal sums:

∞∑
j=0

xjp
j

where 0 ≤ xi ≤ p− 1 and the addition is done with carries,

i.e., to add two sequences
∑∞
j=0 xjp

j and
∑∞
j=0 yjp

j , we add
coordinate-wise and if any of the sums is p or more, we take a carry of 1
to the sum in next coordinate.

Topology is given by subgroups

Gn = {
∞∑
j=0

xjp
j : xj = 0 for j = 1, ..., n− 1}.
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Group of characters

Let Γ denotes the dual group of G, i.e., the group of characters of the
group G.

The group Γ is discrete and it can be represented as a sum of increasing
chain of finite subgroups

Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ ... ⊂ Γn ⊂ ...

where Γ0 = {γ(0)} with γ(0)(g) = 1 for all g ∈ G.

For each n the group Γn is the annihilator of Gn, i.e.,

Γn = G⊥n := {γ ∈ Γ : (γ(g) = 1 for all g ∈ Gn}.
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Group of characters

The characters γ constitute a countable orthogonal system on G with
respect to normalized Haar measure µG and we can consider a series∑

γ∈Γ

aγγ

with respect to this system.

Important subsequence of partial sums of this series are∑
γ∈Γn

aγγ.
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Properties of the characters

For each coset Kn of Gn choose and fix an element gKn . Then for each
n ∈ Z we can represent any element g ∈ G in the form:

g = gKn + {g}n

where {g}n ∈ Gn.

This representation, properties of a character and the definition of the
annihilator imply

γ(g) = γ(gKn)γ({g}n) = γ(gKn).

So with a fixed element gKn , the value γ(g) is constant for all g ∈ Kn.
So we get:

Lemma

If γ ∈ Γn then γ is constant on each coset Kn of Gn.
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Numeration of the characters

The factor groups Γn+1/Γn = G⊥n+1/G
⊥
n and Gn/Gn+1 are isomorphic

and so they are of the same order pn for each n ∈ N. This implies that
the group Γn has mn = p0 · p1 · ... · pn−1 elements.

Put γ0 = 0. Pick up a character γ ∈ Γn+1 \ Γn for each n = 0, 1, 2, ...
and denote it by γmn .

For

n =

s∑
k=0

tkmk, 0 ≤ tk ≤ pk − 1

define

γn :=

s∏
k=0

(γmk)tk .

Now we can consider a usual series in this numeration:
∑∞
i=0 aiγi. In

partucular ∑
γ∈Γn

aγγ = Smn =

mn−1∑
i=0

aiγi
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Examples

If G is dyadic Cantor group, then Γ is Walsh system.

For Vilenkin group it is Price-Vilenkin system.

G is the group of p-adic integers with p being a fixed prime number.

At a point
∞∑
j=0

xjp
j

put

γpn(x) =

n∏
j=0

exp(
2πixj
pn+1

)

.

For example for p = 2 γ22 assumes the values

1, −1, i, −i, exp(
πi

4
), − exp(

πi

4
), exp(

3πi

4
), − exp(

3πi

4
).

For m =
∑nm
n=0 tnp

n γm is a product of γpn .
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QUASI-MEASURE

The integral
´
Kn

Smn defines an additive function ψ on the family I of
all cosets called quasi-measure.

Since the sum Smn is constant on each Kn we get

Smn(g) =
1

|Kn|

ˆ
Kn

Smndµ =
ψ(Kn)

|Kn|
(1)

for any point g ∈ Kn.

So at any point g ∈ G we get

lim
n→∞

Smn(g) = DBψ(g).



U-set and M-set Zero-dimensional compact abelian group

QUASI-MEASURE

The integral
´
Kn

Smn defines an additive function ψ on the family I of
all cosets called quasi-measure.

Since the sum Smn is constant on each Kn we get

Smn(g) =
1

|Kn|

ˆ
Kn

Smndµ =
ψ(Kn)

|Kn|
(1)

for any point g ∈ Kn.

So at any point g ∈ G we get

lim
n→∞

Smn(g) = DBψ(g).



U-set and M-set Zero-dimensional compact abelian group

QUASI-MEASURE

The integral
´
Kn

Smn defines an additive function ψ on the family I of
all cosets called quasi-measure.

Since the sum Smn is constant on each Kn we get

Smn(g) =
1

|Kn|

ˆ
Kn

Smndµ =
ψ(Kn)

|Kn|
(1)

for any point g ∈ Kn.

So at any point g ∈ G we get

lim
n→∞

Smn(g) = DBψ(g).



U-set and M-set Zero-dimensional compact abelian group

QUASI-MEASURE

The integral
´
Kn

Smn defines an additive function ψ on the family I of
all cosets called quasi-measure.

Since the sum Smn is constant on each Kn we get

Smn(g) =
1

|Kn|

ˆ
Kn

Smndµ =
ψ(Kn)

|Kn|
(1)

for any point g ∈ Kn.

So at any point g ∈ G we get

lim
n→∞

Smn(g) = DBψ(g).



U-set and M-set Zero-dimensional compact abelian group

QUASI-MEASURE

Theorem

Any series w.r. to Γ is Fourier-Stieltjes series w.r. to quasi-measure, so
that

aγ = ψ̂(γ) =

ˆ
G

γdψ.

A set E ⊂ G is M -set w.r. to Γ iff there exists a µ-singular quasi-measure
ψ supported by E with

lim
n→∞

ψ̂(n) = 0.

Theorem

Let some integration process A be given which produces an integral ad-
ditive on I. Let a B-interval function ψ be the quasi-measure generated
by the series and (1) holds. Then this series is the Fourier series of an
A-integrable function f if and only if ψ(I) = (A)

´
I
f for any B-interval

I.
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Localization theorem

Localization Theorem.

Let the series ∑
n

cnγn (2)

is a formal product of the series∑
n

anγn, an → 0,

and a polynomial P =
∑k
n=0 bnγn. Then the series (2) and P

∑
n anγn are

uniformly equiconvergent, i.e., their difference is a series that is uniformly
convergent on G with sum zero.
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Localization theorem

Corollary.

For a series ∑
n

anγn, an → 0, (3)

and a coset Kn there exists a series∑
n

cnγn, cn → 0,

which is uniformly equiconvergent with (3) on Kn and is uniformly con-
vergent to zero on G \Kn.

Lemma.

If for the series
∑
n anγn with respect to the system Γ satisfying the

condition limn→∞an = 0, some subsequence of partial sums of the form
Smnk (g) converges to zero for all g in some open set O, then this series
converges to zero on O.
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Construction of M0-set

Let h be a nondecreasing, right-continuous function, h(0) = 0. The
Hausdorff h-measure Hh is defined by

Hh(A) = lim inf
δ→0

∑
{h(diam(Ei)) : Ei open, ∪Ei ⊃ A, diam(Ei) ≤ δ}.

Theorem

For any h there exists a perfect M -set E for the system Γ whose Hausdorff
h-measure equals zero. Moreover it is M0-set, i.e., a set of strict multi-
plicity (corresponding quasi-measure is a probability measure concentrated
on E).
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Construction of M -set

Lemma (main step in construction).

For any A > 0, ε > 0 there exists N ∈ N such that for any Kn, n ≥ N,
any δ > 0, B, 0 < |B| ≤ A and any natural λ there exists a polynomial

P (g) =

ml−1∑
j=mλ

ajγj(g)

with properties:
1. |aj | < ε, mλ ≤ j ≤ ml − 1;
2. P (g) = 0 if g ∈ G \Kn;
3. |P (g)| ≥ |B| if g ∈ Kn;
4. sh(1/ml) < δ where s is the number of those Kl in Kn for which
|P (g)| 6= |B| with g ∈ Kl.
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Construction of M -set

Now using this Lemma we construct by induction a sequence of
polynomial Qk and a sequence of sets Ek, Ek−1 ⊂ Ek, such that

k∑
j=1

Qj(t) = 0

outside Ek−1 and µhE = 0 where E = ∩∞k=1Ek.

It can be proved that required null-series is

∞∑
j=1

Qj(t)

and E is required M0-set.
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