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Introduction

Let f : R→ R be a function.

Definition
We say that f is Darboux, if it maps connected sets onto
connected sets; i.e., if whenever a < b and y is a number
between f(a) and f(b), there is x0 ∈ (a, b) such that f(x0) = y.

Definition
We say that f is quasi-continuous in the sense of Kempisty, if
for all x ∈ R and open sets U 3 x and V 3 f(x), the set
int
(
U ∩ f−1(V )

)
6= ∅.
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Introduction

The symbol C(f) denotes the set of points of continuity of f .

Definition

We say that f is strong Świa̧tkowski, if whenever a < b and y is
a number between f(a) and f(b), there is x0 ∈ (a, b) ∩ C(f)
such that f(x0) = y.

Definition

We say that f is extra strong Świa̧tkowski, if whenever a < b
and y belongs to the closed interval with endpoints f(a) and
f(b), there is x0 ∈ [a, b] ∩ C(f) such that f(x0) = y.
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Introduction

The symbols below denote the following families of real
functions:

C – the class of all continuous functions,
D – the class of all Darboux functions,
Q – the class of all quasi-continuous functions,
DQ – the class of all Darboux quasi-continuous functions,
Śs – the class of all strong Świa̧tkowski functions,
Śes – the class of all extra strong Świa̧tkowski functions.
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Śs – the class of all strong Świa̧tkowski functions,
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Introduction

It can be readily verified that we have the following proper
inclusions:

C  Śes  Śs  DQ  D,
C  Śes  Śs  DQ  Q.

Definition
We say that a set A ⊂ R is semi-open, if A ⊂ cl intA, and it is
semi-closed, if int clA ⊂ A.

Notice that a set A ⊂ R is semi-open if and only if its
complement is semi-closed.
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C  Śes  Śs  DQ  Q.

Definition
We say that a set A ⊂ R is semi-open, if A ⊂ cl intA, and it is
semi-closed, if int clA ⊂ A.

Notice that a set A ⊂ R is semi-open if and only if its
complement is semi-closed.

Paulina Szczuka Generalizations of Urysohn’s lemma for the family of extra strong Świa̧tkowski functions
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Classical separation property

Lemma (Urysohn 1925)
Let X be a normal topological space and sets A0, A1 ⊂ X be
disjoint and closed. Then there exists a continuous function
f : X → R such that f = 0 on A0 and f = 1 on A1. Moreover, if
A0 and A1 are Gδ-sets, then we can require that f(x) ∈ (0, 1)
for each x ∈ X \ (A0 ∪A1).
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Classical separation property

The symbol [f = a] stands for the set {x ∈ R ; f(x) = a}.

Similarly we define [f > a] and [f < a].

Theorem
Let X be a perfectly normal topological space and sets
A0, A1 ⊂ X be disjoint. There is a continuous function
f : X → R such that A0 = [f = 0] and A1 = [f = 1] if and only if
sets A0 and A1 are closed.

Theorem
Let X be a normal topological space and sets A0, A1 ⊂ X.
There is a continuous function f : X → R such that A0 ⊂ [f = 0]
and A1 ⊂ [f = 1] if and only if sets clA0 ∩ clA1 = ∅.
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Classical separation property

Theorem (Maliszewski 2002)
Let A0, A1 ⊂ R be disjoint. There is a Darboux function
f : R→ R such that A0 = [f = 0] and A1 = [f = 1] if and only if
the set R \ (A0 ∪A1) is bilaterally c-dense in itself and
card
(
I[α, β] \ (A0 ∪A1)

)
= c for each α ∈ A0 and β ∈ A1.

Theorem (Maliszewski 2002)
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Classical separation property

Theorem (Kowalewski 2005)
Let A0, A1 ⊂ R be disjoint. There is a quasi-continuous function
f : R→ R such that A0 = [f = 0] and A1 = [f = 1] if and only if
sets A0, A1 and A0 ∪A1 are semi-closed.

Theorem (Kowalewski 2005)
Let A0, A1 ⊂ R. There is a quasi-continuous function f : R→ R
such that A0 ⊂ [f = 0] and A1 ⊂ [f = 1] if and only if
A0 ∩A1 = int clA0 ∩A1 = A0 ∩ int clA1 = ∅.
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Classical separation property

Theorem (Kowalewski and Maliszewski 2008)
Let A0, A1 ⊂ R be disjoint. The following conditions are
equivalent :

1 there is a strong Świa̧tkowski function f : R→ R such that
A0 = [f = 0] and A1 = [f = 1],

2 there is a Darboux quasi-continuous function f : R→ R
such that A0 = [f = 0] and A1 = [f = 1],

3 sets A0 and A1 are semi-closed, R \ (A0 ∪A1) is bilaterally
dense in itself and I(α, β) \ cl(A0 ∪A1) 6= ∅ for each α ∈ A0
and β ∈ A1.
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1 there is a strong Świa̧tkowski function f : R→ R such that
A0 = [f = 0] and A1 = [f = 1],

2 there is a Darboux quasi-continuous function f : R→ R
such that A0 = [f = 0] and A1 = [f = 1],

3 sets A0 and A1 are semi-closed, R \ (A0 ∪A1) is bilaterally
dense in itself and I(α, β) \ cl(A0 ∪A1) 6= ∅ for each α ∈ A0
and β ∈ A1.

Paulina Szczuka Generalizations of Urysohn’s lemma for the family of extra strong Świa̧tkowski functions
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Classical separation property

Theorem (Kowalewski and Maliszewski 2008; Szczuka 2014)
Let A0, A1 ⊂ R be disjoint. The following conditions are
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such that A0 ⊂ [f = 0] and A1 ⊂ [f = 1],
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Classical separation property

Theorem (Szczuka 2014)

Let A0, A1 ⊂ R be disjoint. There is an extra strong Świa̧tkowski
function f : R→ R such that A0 = [f = 0] and A1 = [f = 1] if
and only if the following conditions are true:

1 A0 and A1 are semi-closed,
2 R \ (A0 ∪A1) is bilaterally dense in itself,
3 I(α, β) \ cl(A0 ∪A1) 6= ∅ for each α ∈ A0 and β ∈ A1,
4 for i ∈ {0, 1} there is a Gδ-set Bi ⊂ Ai such that

clA1−i ∩Bi = ∅ and I[x, t) ∩Bi 6= ∅ for each x ∈ Ai and
t ∈ R.
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New separation property

Theorem
Let X be a perfectly normal topological space and sets
A+, A− ⊂ X be disjoint. There is a continuous function
f : X → R such that A+ = [f > 0] and A− = [f < 0] if and only
if sets A+ and A− are open.

Theorem
Let X be a perfectly normal topological space and sets
A+, A− ⊂ X. There is a continuous function f : X → R such
that A+ ⊂ [f > 0] and A− ⊂ [f < 0] if and only if
clA+ ∩A− = clA− ∩A+ = ∅.
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Theorem (Maliszewski 2002)

Let A+, A− ⊂ R be disjoint. There is a Darboux function
f : R→ R such that A+ = [f > 0] and A− = [f < 0] if and only
if sets A+ and A− are bilaterally c-dense in themselves and
I[α, β] \ (A− ∪A+) 6= ∅ for each α ∈ A− and β ∈ A+.

Theorem (Maliszewski 2002)

Let A+, A− ⊂ R be disjoint. There is a Darboux function
f : R→ R such that A+ ⊂ [f > 0] and A− ⊂ [f < 0] if and only
if every point from A+ is bilateral c-limit point of R \A−, every
point from A− is bilateral c-limit point of R \A+ and
I[α, β] \ (A− ∪A+) 6= ∅ for each α ∈ A− and β ∈ A+.
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Generalizations of Urysohn’s lemma
Introduction
Classical separation property
New separation property

New separation property

Theorem (Maliszewski 2002)

Let A+, A− ⊂ R be disjoint. There is a Darboux function
f : R→ R such that A+ = [f > 0] and A− = [f < 0] if and only
if sets A+ and A− are bilaterally c-dense in themselves and
I[α, β] \ (A− ∪A+) 6= ∅ for each α ∈ A− and β ∈ A+.

Theorem (Maliszewski 2002)

Let A+, A− ⊂ R be disjoint. There is a Darboux function
f : R→ R such that A+ ⊂ [f > 0] and A− ⊂ [f < 0] if and only
if every point from A+ is bilateral c-limit point of R \A−, every
point from A− is bilateral c-limit point of R \A+ and
I[α, β] \ (A− ∪A+) 6= ∅ for each α ∈ A− and β ∈ A+.

Paulina Szczuka Generalizations of Urysohn’s lemma for the family of extra strong Świa̧tkowski functions
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Theorem (Kowalewski 2005)

Let A+, A− ⊂ R be disjoint. There is a quasi-continuous
function f : R→ R such that A+ = [f > 0] and A− = [f < 0] if
and only if sets A+ and A− are semi-open.

Theorem (Kowalewski 2005)

Let A+, A− ⊂ R. There is a quasi-continuous function
f : R→ R such that A+ ⊂ [f > 0] and A− ⊂ [f < 0] if and only
if A+ ∩A− = int clA+ ∩A− = A+ ∩ int clA− = ∅.
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Theorem (Kowalewski and Maliszewski 2008)

Let A+, A− ⊂ R be disjoint. There is a Darboux
quasi-continuous function f : R→ R such that A+ = [f > 0]
and A− = [f < 0] if and only if sets A+ and A− are semi-open
and bilaterally dense in themselves and I[α, β] \ (A− ∪A+) 6= ∅
for each α ∈ A− and β ∈ A+.

Theorem (Kowalewski and Maliszewski 2008)

Let A+, A− ⊂ R be disjoint. There is a Darboux
quasi-continuous function f : R→ R such that A+ ⊂ [f > 0]
and A− ⊂ [f < 0] if and only if I[α, β] \ (A− ∪A+) 6= ∅ and
I(α, β) \ clA− 6= ∅ 6= I(α, β) \ clA+ for each α ∈ A− and β ∈ A+.
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New separation property

Theorem (Kowalewski 2010)

Let A+, A− ⊂ R be disjoint. There is a strong Świa̧tkowski
function f : R→ R such that A+ = [f > 0] and A− = [f < 0] if
and only if sets A+ and A− are semi-open and bilaterally dense
in themselves and there is a Gδ-set D ⊂ R \ (A+ ∪A−) such
that I(α, β) ∩D 6= ∅ for each α ∈ A− and β ∈ A+.

Theorem (Kowalewski 2010)

Let A+, A− ⊂ R be disjoint. There is a strong Świa̧tkowski
function f : R→ R such that A+ ⊂ [f > 0] and A− ⊂ [f < 0] if
and only if I(α, β) \ clA− 6= ∅ 6= I(α, β) \ clA+ for each α ∈ A−
and β ∈ A+ and there is a Gδ-set D ⊂ R \ (A+ ∪A−) such that
I(α, β) ∩D 6= ∅ for each α ∈ A− and β ∈ A+.
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New separation property

Problem
Characterize a pair (A+, A−) of disjoint sets for which there is
an extra strong Świa̧tkowski function f : R→ R such that
A+ = [f > 0] and A− = [f < 0].

Problem
Characterize a pair (A+, A−) of disjoint sets for which there is
an extra strong Świa̧tkowski function f : R→ R such that
A+ ⊂ [f > 0] and A− ⊂ [f < 0].
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Generalizations of Urysohn’s lemma

The bibliography

M. Kowalewski, Rozdzielanie zbiorów przy użyciu funkcji z
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	Generalizations of Urysohn's lemma
	Introduction
	Classical separation property
	New separation property


