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Introduction

H. Steinhaus, Nowa w lasność monogości Cantora, Wektor (1917) 1-3 [English
translation: H. Steinhaus, Selected papers, PWN, Warszawa 1985 (pages 205-207)]

Theorem

C + C = [0, 2]

J. Randolph, Distances between points of the Cantor set, Amer. Math. Monthly
47(1940) 549-551

J. Randolph, some properties of sets of Cantor type, J. London Math. Soc. 16(1941)
38-42

W.R. Utz, The distance set for the Cantor discontinuum, Amer. Math. Monthly
58(1951) 407-408

Theorem

C + λC is an interval iff 1
3
≤ |λ| ≤ 3.
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H. Steinhaus, Nowa w lasność monogości Cantora, Wektor (1917) 1-3 [English
translation: H. Steinhaus, Selected papers, PWN, Warszawa 1985 (pages 205-207)]

Theorem

C + C = [0, 2]

J. Randolph, Distances between points of the Cantor set, Amer. Math. Monthly
47(1940) 549-551

J. Randolph, some properties of sets of Cantor type, J. London Math. Soc. 16(1941)
38-42

W.R. Utz, The distance set for the Cantor discontinuum, Amer. Math. Monthly
58(1951) 407-408

Theorem

C + λC is an interval iff 1
3
≤ |λ| ≤ 3.

F. Prus-Wísniowski Beyond the sets of subsums



Introduction

M. Paw lowicz, Linear combinations of the classic Cantor set, Tatra Mountain Math.

Publ. 56(2013) 47-60

Theorem

Given a λ ∈ (0, 1), let n := max{ k ∈ N0 : λ < 1
3k } and let

In =
2n⊔

i=1

[ai , bi ]

be the n-th iteration of the classic construction of the Cantor set. Then

C + λC =
2n⊔

i=1

[ai , bi + λ].

a Cantor set = a bounded, perfect and nowhere dense subset of R
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regular central Cantor sets

Regular Cantor sets (or dynamically defined Cantor sets):

λ = (λ0, λ
′
1, λ1, ..., λ

′
k , λk ) ∈ R2k+1 a probability vector

The family {Pi : i = 0, 1, . . . , k } is called the Markov partition for C.

φ :
k⋃

i=0

Pi → [0, 1] a C r -function

Each φi := φ
∣∣

Pi
is a surjective expanding map, that is,

|φi (x)− φi (y)| > α|x − y | for some α > 1. Then

C = C(λ, φ) :=
⋂
n∈N

φ−n(P0 ∪ . . . ∪ Pk )

is a C r -regular Cantor set.

F. Prus-Wísniowski Beyond the sets of subsums



regular central Cantor sets

Regular Cantor sets (or dynamically defined Cantor sets):

λ = (λ0, λ
′
1, λ1, ..., λ

′
k , λk ) ∈ R2k+1 a probability vector

The family {Pi : i = 0, 1, . . . , k } is called the Markov partition for C.

φ :
k⋃

i=0

Pi → [0, 1] a C r -function

Each φi := φ
∣∣

Pi
is a surjective expanding map, that is,

|φi (x)− φi (y)| > α|x − y | for some α > 1. Then

C = C(λ, φ) :=
⋂
n∈N

φ−n(P0 ∪ . . . ∪ Pk )

is a C r -regular Cantor set.

F. Prus-Wísniowski Beyond the sets of subsums



regular central Cantor sets

If each φi is an affine map, then we say that C = C(λ, φ) is an affine Cantor
set.

B. Honary, C.G. Moreira, M. Pourbarat, Stable intersections of affine Cantor sets,
Bull. Braz. Math. Soc. New Series 36(3)(2005) 363-378

J. Palis, Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets,
Contemp. Math. 58(1987) 203-216

Palis’ Question(s)

Is it true that for regular (affine) Cantor sets C1, C2 we have either
µ(C1 + C2) = 0 or else C1 + C2 contains an interval ?

Actually, what is of interest to the dynamical systems people is when a Cantor
set C1 intersects a translate of another Cantor set C2.

{ x : C1 ∩ (x + C2) 6= ∅ } = C1 − C2 = C1 + (−C2)
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regular central Cantor sets

The central Cantor sets:
C =

⋂
b∈N

In

such that there exists a sequence (qn) ∈ (0, 1
2
) where I0 = [0, 1] and

In =
2n⊔

i=1

P
(n)
i ( P

(n)
i – closed intervals)

The open intervals removed from P
(n)
i in each step of the construction are

central with respect to P
(n)
i , that is, they share the midpoint with P

(n)
i .

|P(n+1)
2i |
|P(n)

i |
=
|P(n+1)

2i−1 |
|P(n)

i |
= qn+1 for n ∈ N0, i = 1, . . . , 2n

qn = the nth ratio of retention (ratio of dissection). The corresponding
central Cantor set is then denoted by C = C[(qn)]. If qn ≡ α, we will write
C = C[α]. The classic Cantor set is Cclassic = C[ 1

3
].
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regular central Cantor sets

R. Bamón, S. Plaza, J. Vera, On central Cantor sets with self-arithmetic difference of

positive Lebesgue measure J. London Math. Soc. 52 (1995) 137-146

Theorem

Every central Cantor set is regular of class C 0.

J. Palis knew the following facts

C[α] + C[α] = [0, 2] for α ∈ [ 1
3
, 1

2
)

µ
(
C[α] + C[α]

)
= 0 for α ∈ (0, 1

3
)

He wrote: we do not know the answer in general for C[α] + C[β].

J. Palis, F. Takens, Cycles and measure of bifurcation sets for two dimensional

diffeomorphisms, Invent. Math. 82 (1985) 397-422

Theorem

Let C1, C2 be C r -regular Cantor sets with r ≥ 1. If dimH C1 + dimH C2 < 1,
then µ(C1 + C2) = 0.
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regular central Cantor sets

J. Marstand, Some fundamental geometric properties of plane sets of fractional

dimensions, Proc. London Math. Soc. 4 (1952) 257-302

Theorem

Let C1, C2 be C r -regular Cantor sets with r ≥ 1. If dimH C1 + dimH C2 > 1,
then µ(C1 + λC2) > 0 for almost all λ ∈ R.

The last two theorems remain true even if we drop any regularity conditions on
the Cantor sets C1, C2, but then we have to replace the Hausdorff dimension
dimH by the limit capacity

d(A) := lim sup
ε→0+

ln N(ε)

− ln ε

where N(ε) is the minimal number of ε-balls needed to cover the set A. In
general, d(A) ≥ dimH A, but the equality holds for C 1-regular Cantor sets.
Recall that for λ = 1 we get µ(C[α] + λC[α]) = 0 for 1

4
< α < 1

3
.

Since dimH C[α] =
ln 2

− lnα
, we have dimH C[α] + dimH C[α] > 1 for those α’s

and therefore λ = 1 is an exceptional value for the Marstand theorem (for the
pair C[α], C[α]).
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negative answers to the Palis conjecture

A. Sannami, An example of a regular Cantor set whose difference set is a Cantor set

with positive Lebesgue measure, Hokkaido Math. J. 21 (1992) 7-24

Theorem

If qi <
1
3

for all i , then µC[(qi )] = 0 and C[(qi )] + C[(qi )] is a Cantor set.
However, if

∏∞
i=1(3qi ) > 0, then µ

(
C[(qi )] + C[(qi )]

)
> 0.

Bamón, Plaza and Vera found a very handy analytic characterization of a large
subclass of C r -regular central Cantor sets.

Theorem

Let r ≥ 1 and let (qi ) be a sequence of numbers from (0, 1
2
) satisfying the

following conditions:

(i) there exists a limit q := limi→∞ qi ∈ (0, 1
2
) ;

(ii) eiter qi < q for all i or qi > q for all i .

Then C[(qi )] is regular of class C r if and only if

lim
n→∞

1 − qn
q∏n−1

i=1 qr−1
i

= 0.
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negative answers to the Palis conjecture

Using the characterization, they found infinitely many counterexamples to the
Palis conjecture.

Theorem

For every r ∈ N the class of central Cantor sets that are C r but not C r+1, that
have zero Lebesgue measure and whose self-arithmetic sums are Cantor sets
with postive Lebesgue measure, is non-empty.

F. Prus-Wísniowski, unpublished

Theorem

Every central Cantor set is the arithmetic sum of two central Cantor sets of
Lebesgue measure zero.

The theorem is elegant, but it does not contradict the Palis conjecture,
because it says nothing about regularity of the sets.
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negative answers to the Palis conjecture

F. Prus-Wísniowski, unpublished

Theorem

Let r ∈ N and let C = C[(qi )] be a C r -regular central Cantor set satisfying the
conditions:

(i) there exists a limit q := limi→∞ qi ∈ (0, 1
2
) ;

(ii) the sequence (qi ) is monotonic, but not eventually constant.

Then C is the arithmetic sum of two C r -regular central Cantor sets of
Lebesque measure zero.
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positive answers to the Palis conjecture

P. Larsson, L’ensemble différence de deux ensembles de Cantor aléatoires, C.R. Acad.
Sci. Paris 310 (1990) 735-738

P. Larsson defined a special family of random Cantor sets and, using methods
from the theory of branching processes, proved that for almost all pairs C1, C2

of such sets if dimH C1 = dimH C2 >
1
2

(which implies
dimH C1 + dimH C2 > 1), then C1 + C2 contains an interval.
Although the main idea of Larsson’s argument is brilliant, unfortunately, the
proof contains significant gaps and even incorrect reasoning. The faults of
Larsson’s work have been pinpointed recently and a correct proof was supplied
in
M. Dekking, K. Simon, B. Székely, The algebraic difference of two random Cantor
sets: the Larsson family, Ann. Prob. 39 (2) (2011) 549-586
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positive answers to the Palis conjecture

C.G. Moreira, J.- C. Yoccoz, Stable intersections of regular Cantor sets with large
Hausdorff dimensions, Ann. Math. 154 (2001) 45-96

Ω∞ = { (C1, C2) : C1, C2 are C r -regular Cantor sets and dimH C1 + dimH C2 > 1 }

Theorem

For r > 1 there is an open and dense set U ⊂ Ω∞ such that if (C1, C2) ∈ U ,
then the interior of C1 + C2 is dense in C1 + C2.
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sets of subsums

Let
∑

an be an absolutely convergent series of real numbers with at least one
non-zero term. The set of subsums is then

E(an) = E(
∑

an) :=

{
x ∈ R : ∃ B ⊂ N

∑
n∈B

an = x

}
.

S. Kakeya, On the partial sums of an infinite series, Tohoku Sci. Rep. 3 (1914)
159-164

Theorem

The set of subsums of an absolutely convergent series is bounded and perfect.

From now on, we will usually assume that
∑

an = 1 and an ≥ an=1 > 0 for
all n. In that case E(an) ⊂ [0, 1].

F. Prus-Wísniowski, Beyond the sets of subsums, preprints of the Faculty of
Mathematics and Informatics,  Lódź University 2013
(www.mat.uni.lodz.pl/preprints,all.html)

the n-th remainder rn =
∑
i>n

ai , n ∈ N0
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sets of subsums

Theorem

E(an) = [0, 1] iff rn ≥ an for all n.

Theorem

If an < rn for all sufficiently large n, then E(an) is a Cantor set. In that case
µE(an) = limn→∞ 2nrn.

Theorem

E(an) is a union of finitely many closed and bounded intervals if and only if
rn ≥ an for all sufficiently large n.

A.D. Weinstein, B.E. Shapiro, On the structure of the set of α-representable numbers,
Izv. Vyssh. Uchebn. Zaved. Mat. 24(1980) 8-11

Cz. Ferens, On the range of purely atomic measures, Studia Math. 77(1984) 261-263
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sets of subsums

A bounded set A ⊂ R is said to be an M-Cantorval if it is perfect and all gaps
of A (including the external ones) are on each (finite) side accumulated by
infinitely many intervals and by infinitely many gaps.

J. Guthrie, J.E. Nymann, The topological structure of the set of subsums of an infinite

series, Colloq. Math. 55(1988) 323-327

Theorem

Any two M-Cantorvals are homeomorphic.

The Gutrie-Nymann-Sáenz Classification Theorem

Let
∑

an be an absolutely convergent series of real terms. Then exaxtly one of
the following cases holds:

(i) E(an) is a finite set;

(ii) E(an) is the union of a finite family of bounded and closed intervals;

(iii) E(an) is a Cantor set;

(iv) E(an) is an M-Cantorval.
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an be an absolutely convergent series of real terms. Then exaxtly one of
the following cases holds:

(i) E(an) is a finite set;

(ii) E(an) is the union of a finite family of bounded and closed intervals;

(iii) E(an) is a Cantor set;

(iv) E(an) is an M-Cantorval.
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sets of subsums

Z. Nitecki, Subsum sets: intervals, Cantor sets, and Cantorvals,

arXiv: 1106.3779v1[math.HO]

Theorem

Some Kenyon sets are M-Cantorvals.

Let {k1, . . . , km } be a finite set of reals and let q ∈ (0, 1). The series∑
(k1, . . . , km; q) :=

∑
i∈N

j∈{j,...,m}

kj q
i

is called a multigeometric series.
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sets of subsums

A. Bartoszewicz, M. Filipczak, E. Szymonik, Multigeometric sequences and

Canotrvals, Central European J. Math. 12(7)(2014) 1000-1007

Theorem

Let k1 ≥ k2 ≥ . . . ≥ km be positive integers and K :=
∑m

i=1 ki . Assume that
there exists positive integers n0 and n such that each of the numbers
n0, n0 + 1, . . . , n0 + n can be obtained by summing up elements of a subset of
{k1, . . . , km }. If

1

n + 1
< q ≤ km

K + km
,

then E
(∑

(k1, . . . , km; q)
)

is an M-Cantorval.

Theorem

For any k ∈ N, the set of subsums

E

(∑
(3, 2, . . . , 2︸ ︷︷ ︸

k times

; 1
2k+2

)

)

is an M-Cantorval.
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sets of subsums

M. Banakiewicz, F. Prus-Wísniowski, M-Cantorvals of Ferens type, under review in the
Bull. London Math. Soc. [for 6 months now and going...]

A multigeometric series of the form
∑

(m + k − 1, m + k − 2, . . . , m; q)
where k, m are positive integers such that k ≥ m + 1, is said to be of Ferens
type. Given such a series, we set s := m + (m + 1) + · · ·+ (m + k − 1).

Theorem

Let Σ =
∑

(m + k − 1, m + k − 2, . . . , m; q) be a Ferens type series.

(i) If 0 < q < 1
s+1

, then E(Σ) is a Cantor set.

(ii) If 1
s−2m+1

≤ q < m
s+m

, then E(Σ) is an M-Cantorval. In this case

µE = (s − 2m)
q

1− 3q
= µ(int E).

(iii) If m
s+m
≤ q < 1, then E(Σ) = [0, sq

1−q
].
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sets of subsums

In the past year, Bartoszewicz, Filipczak and Szymonik together with Taras
Banakh strenghtened the results on sets of subsums of multigeometric series
significantly.

T. Banakh, A. Bartoszewicz, M. Filipczak, E. Szymonik, Topological and measure
properties of some self-similar sets, arXiv: 1403.0098v1[math.GN]

Using deep results of Boris Solomyak on the distribution of random
multigeometric series, they managed to show that for almost all q in the
mysterious interval, the set of subsums E

(∑
(k1, . . . , km; q)

)
has positive

Lebesgue measure. On the other hand, under some mild conditions, they
showed that there exists a sequence of ratios (qi )i∈N decreasing to the left end
of the mysterious interval such that µ

(
E(
∑

(k1, . . . , km; q)
)

= 0 for all i .
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Sums of homogeneous Cantor sets

Now, let C[(qi )] be a central Cantor set with [0, 1] as the fudamental interval.
In particular, all qi ∈ (0, 1

2
). Setting

an := (1 − qn)
n−1∏
i=1

qi for n ∈ N

(
0∏

i=1

qi := 1

)
,

we obtain a series
∑

an = 1 of positive terms such that

C[(qi )] = E(
∑

an).

Moreover, qi = ri/ri−1 for all i ∈ N. In particular,

Cclassic = C[ 1
3

] = E(
∑ 2

3n
).

J. Nymann, Linear combination of Cantor sets, Colloq. Math. 68(1995) 259-284

He investigated the topological type of a particular linear combination

Eq + λEq for λ ∈ (0, 1] and q ∈ (0,
1

2
)

where

Eq := E(
∞∑

n=1

qn).
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Sums of homogeneous Cantor sets

In particular, Cclassic = 2E 1
3

and, in general, C[q] = ( 1
q
− 1)Eq. On the other

hand,
Eq + λEq = E

(
Σ(1, λ; q)

)
.

Theorem

(i) If q ∈ [ 1
3
, 1

2
), then Eq + λEq is the union of a finite family of closed

bounded intervals for every λ ∈ (0, 1].

(ii) If q ∈ [ 1
4
, 1

3
), then Eq + λEq is the union of a finite family of closed

bounded intervals iff

λ ∈
[

qk (1− 2q),
qk+1

1− 2q

]
for some k ∈ N0.

(iii) E 1
4

+ 2
3·4n E 1

4
is an M-Cantorval for every n ∈ N.

(iv) If q ∈ (0, 1
4
), then for all λ ∈ (0, 1] the set Eq + λEq is either a Cantor

set or an M-Cantorval.
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Sums of homogeneous Cantor sets

A Cantor set is said to homogeneous if it is affine and all intervals of its
Markov partition have the same length.

A perfect subset of R such that any gap of it has an interval adjacent to its
right (left) endpoint and is accumulated on the left (right) endpoint by
infinitely many intervals and gaps, is called an L-Cantorval (R-Cantorval).

A Cantor set is symmetric if it is symmetric with respect to the midle point of
its fundamental interval.

P. Mendes, F. Oliveira, On the topological structure of the arithmetic sum of two
Cantor sets, Nonlinearity 7(1994) 329-343
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Sums of homogeneous Cantor sets

Theorem

If C1 and C2 are homogeneous Cantor set with fundamental intervals of equal
length (assume [0, 1]), then exactly one of the following cases holds:

(i) C1 + C2 = [0, 2] ;

(ii) C1 + C2 is a Cantor set;

(iii) C1 + C2 is an R-Cantorval such that [0, 1] is contained in one of the
intervals of C1 + C2;

(iv) C1 + C2 is an L-Cantorval such that [1, 2] is contained in one of the
intervals of C1 + C2;

(v) C1 + C2 is an M-Cantorval.

If both C1 and C2 are symmetric, then only the possibilities (i), (ii) and (v) can
occur.

The assumption of equal length is indispensable:
R. Anisca, Ch. Chlebovec, On the structure of arithmetic sums of Cantor sets with
constant ratios of dissection, Nonlinearity 22(2009) 2127-2140
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Thickness of Cantor sets

C – a Cantor set; G – an internal gap of C ;

A closed and bounded interval B is called a span of a gap G if it is the
bounded interval obtained from R by removing the gap G and any other gap
(possibly an external one).
The bridge B of the gap G is then the longest among all spans of G containing
only gaps shorter than G . A bridge might not be unique, but its length is
uniquely determined. We refer to (B, G) as a bridge/gap pair. The thickness
of the Cantor set C is then defined as

τ(C) := inf

{
|B|
|G | : (B, G) - a bridge/gap pair

}
.

J. Palis, F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic
bifurcations, Cambridge Stud. Adv. Math. 35, Cambridge Univ. Press, 1995

R.L. Kraft, Intersections of thick Cantor sets, Memoirs Amer. Math. Soc. 97(1992)
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Thickness of Cantor sets

S.E. Newhouse, Lectures on dynamical systems, Dynamical Systems, CIME Lectures,
Birkh auser Verlag 1980 (pp. 1-114)

The Newhouse Gap Lemma

Let C1 and C2 be Cantor sets with fundamental intervals I1, I2 such that

(i) I1 is longer than each internal gap of C2;

(ii) I2 is longer than each internal gap of C1.

If τC1 · τC2 ≥ 1, then C1 + C2 = I1 + I2.

τC[α] =
α

1− 2α
for α ∈ (0, 1

2
).

The inequality τC[α] · τC[β] ≥ 1 is equivalent to

α

1− α +
β

1− β ≥ 1.

Refined thickness methods were studied and applied in: S. Astels, Cantor sets
and numbers with restricted partial quotients, Trans. Amer. Math. Soc. 352(2000)
133-170

Among others he generalized the Newhouse Gap Lemma.
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C[α] + C[β]

J. Palis: We do not know in general what is C[α] + C[β].

The problem is utterly difficult and only some more specialized questions have
been answered so far. Mendes and Oliveira in their 1994 paper examined the
issue of when C[α] + C[β] = [0, 2].

We may assume that 0 < β ≤ α < 1
2

by symmetry. The triangle of vertices
(0, 0), ( 1

2
, 0) and ( 1

2
, , 1

2
) is foliated by the curves β = αt , t ≥ 1.

The line β = 1− 2α intersects the line β = α at ( 1
3
, 1

3
).

For each t ≥ 1, there is a unique α2(t) ∈ (0, 1
2
) such that (α2(t), α2(t)t)

belongs to the curve α
1−α + β

1−β = 1.

This equation means that the product of the thickness of C[α] and C[β] is
equal to one, so that for all pairs (α, β) above the hyperbola the sum
C[α] + C[β] is the interval [0, 2] by the Newhouse Gap Lemma.

Further, for each t ≥ 1, there is a unique α1(t) ∈ (0, 1
2
) such that

(α1(t), α1(t)t) belongs to the line β = 1− 2α. Moreover, α1(t) < α2(t) for
all t > 1 and α1(1) = α2(1) = 1

3
.
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C[α] + C[β]

P. Mendes, F. Oliveira, On the topological structure of the arithmetic sum of two
Cantor sets, Nonlinearity 7(1994) 329-343

Theorem

For each t ≥ 1 there is a unique α(t) ∈ [α1(t), α2(t)] such that

C[α] + C[β] = [0, 2] if and only if α ≥ α(t).

Moreover,

(i) if t is irrational, then α(t) = α2(t);

(ii) if t = n or t = n+1
n

, then α(t) = α1(t).
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C[α] + C[β]

C.A. Cabrelli, K.E. Hare, U.Molters, Sums of Cantor sets yielding an interval, J.
Australian Math. Soc. 73(2002) 405-418

Theorem

Let 0 < β < α < 1
2
. Then the following statements are equivalent:

(i) C[α] + C[β] = [0, 2];

(ii) For every m, n ∈ N at least one of the following inequalities holds:

(a) βn−1(1 − 2β) ≤ αm;
(b) αm−1(1 − 2α) ≤ βn.

(iii) There are no positive integers n, , m such that

ln(1− 2α) < (n + 1) lnβ − (m − 1) lnα < ln
1

1− 2β
.
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C[α] + C[β]

Corollary

If ln β
lnα

is irrational, then

C[α] + C[β] = [0, 2] if and only if τC[α] · τC[β] ≥ 1.

Corollary

Let β = 1− 2α. Then

C[α] + C[β] = [0, 2] if and only if
lnβ

lnα
∈ N ∪

(
1 +

1

N

)
.

Here is one of their hypotheses: for every rational value of ln β
lnα

there is a
choice of α such that τC[α] · τC[β] < 1 and C[α] + C[β] = [0, 2].

They proved it for ln β
lnα

= 1 + p
q

, p, q ∈ N and relatively prime, p ≤ 8, and

also they proved it for all ln β
lnα
∈ N + 1

2
.
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Corollary
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Let β = 1− 2α. Then
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choice of α such that τC[α] · τC[β] < 1 and C[α] + C[β] = [0, 2].
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also they proved it for all ln β
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C[α] + C[β]

B. Solomyak, On the measure of arithmetic sums of Cantor sets, Indag. Mat.
8(1)(1997) 133-141

dimH

(
C[α] + C[β]

)
≤ dimH C[α] + dimH C[β] =

ln 2

− lnα
+

ln 2

lnβ
< 1

Theorem

For any α ∈ (0, 1
2
) there is a set Wα ⊂ (0, 1

2
) of zero Lebesgue measure such

that

dimH C[α] + dimH C[β] > 1 implies µ
(
C[α] + C[β]

)
> 0

for all β ∈ (0, 1
2
) \Wα.

Y. Peres, P. Shmerkin, Resonanse between Cantor sets, Ergodic Theory Dyn, Syst.
29(1)(2009) 201-221

Theorem

If ln β
lnα

is irrational, then

dimH

(
C[α] + C[β]

)
= min

{
1, dimH C[α] + dimH C[β]

}
.
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C[α] + C[β]

B. Solomyak, On the measure of arithmetic sums of Cantor sets, Indag. Mat.
8(1)(1997) 133-141

dimH

(
C[α] + C[β]

)
≤ dimH C[α] + dimH C[β] =

ln 2

− lnα
+

ln 2

lnβ
< 1

Theorem

For any α ∈ (0, 1
2
) there is a set Wα ⊂ (0, 1

2
) of zero Lebesgue measure such

that

dimH C[α] + dimH C[β] > 1 implies µ
(
C[α] + C[β]

)
> 0

for all β ∈ (0, 1
2
) \Wα.

Y. Peres, P. Shmerkin, Resonanse between Cantor sets, Ergodic Theory Dyn, Syst.
29(1)(2009) 201-221

Theorem

If ln β
lnα

is irrational, then

dimH

(
C[α] + C[β]

)
= min

{
1, dimH C[α] + dimH C[β]

}
.
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C[α] + C[β]

B. Solomyak, On the measure of arithmetic sums of Cantor sets, Indag. Mat.
8(1)(1997) 133-141

dimH

(
C[α] + C[β]

)
≤ dimH C[α] + dimH C[β] =

ln 2

− lnα
+

ln 2

lnβ
< 1

Theorem

For any α ∈ (0, 1
2
) there is a set Wα ⊂ (0, 1

2
) of zero Lebesgue measure such

that

dimH C[α] + dimH C[β] > 1 implies µ
(
C[α] + C[β]

)
> 0

for all β ∈ (0, 1
2
) \Wα.

Y. Peres, P. Shmerkin, Resonanse between Cantor sets, Ergodic Theory Dyn, Syst.
29(1)(2009) 201-221

Theorem

If ln β
lnα

is irrational, then

dimH

(
C[α] + C[β]

)
= min

{
1, dimH C[α] + dimH C[β]

}
.
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C[α] + C[β]

B. Solomyak, On the measure of arithmetic sums of Cantor sets, Indag. Mat.
8(1)(1997) 133-141

dimH

(
C[α] + C[β]

)
≤ dimH C[α] + dimH C[β] =

ln 2

− lnα
+

ln 2

lnβ
< 1

Theorem

For any α ∈ (0, 1
2
) there is a set Wα ⊂ (0, 1

2
) of zero Lebesgue measure such

that

dimH C[α] + dimH C[β] > 1 implies µ
(
C[α] + C[β]

)
> 0

for all β ∈ (0, 1
2
) \Wα.

Y. Peres, P. Shmerkin, Resonanse between Cantor sets, Ergodic Theory Dyn, Syst.
29(1)(2009) 201-221

Theorem

If ln β
lnα

is irrational, then

dimH

(
C[α] + C[β]

)
= min

{
1, dimH C[α] + dimH C[β]

}
.
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Hey, you in the last row,

wake up!
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Thank you for attention
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