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Definitions

Let X be a Tychonoff space and Y be a metric space;
let C(X,Y ) be a space of continuous functions from X to Y ;
let C∗(X,Y ) be a space of bounded continuous functions from X
to Y ;
on these spaces we consider τU the topology of uniform
convergence (generated by supremum metric);
d(X) denotes the density of X;
w(X) denotes the weight of X.
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Definitions

Stone-Weierstrass Theorem

let C(X) = C(X,R) and C∗(X) = C∗(X,R);

we are interested in d(C(X))

Theorem (Stone-Weierstrass)

Suppose X is a compact Hausdorff space and A is a subalgebra of
C(X) which contains a non-zero constant function. Then A is dense
in C(X) iff it separates points.

Corollary

Let X be a compact Hausdorff space then d(C(X)) = w(X).
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Motivations

Čech-Stone Compactification

[R.A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous
Functions. Springer-Verlag, 1988.]
Theorem 4.2.4 states this

Let X be a Tychonoff space then w(βX) = d(C(X)).

but from the proof we have only this

Theorem

Let X be a Tychonoff space then w(βX) = d(C∗(X))≤ d(C(X)).

For which Tychonoff spaces X does d(C(X)) = w(βX) hold?

Obviously for pseudocompact X.
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Motivations

Compactness Degree

Definition
A topological space Z is called m−compact iff every open cover of Z
has a subcover with the cardinality less than m. Put

δ(Z) = min{m; Z is m-compact}.

We will call δ(Z) the compactness degree of Z.

Proposition

For a topological space Z holds L(Z) ≤ δ(Z) ≤ L(Z)+.
(L is Lindelöff number.)

A metrizable space Z is generalized compact (GK) iff δ(Z) = L(Z)
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Metrizable Spaces

Metrizable Spaces - via δ

Theorem (Theorem 2.6)

Let X be a metrizable space and Y be a path connected metric
space. We have that

1 if X is not GK and Y is not GTB, then d(C(X,Y )) = d(Y )d(X);
2 if X is not GK and Y is GTB, then d(C(X,Y )) = [< d(Y )]d(X);
3 if X is GK and Y is not GTB, then d(C(X,Y )) = d(Y )<d(X);
4 if X is GK and Y is GTB, then d(C(X,Y )) = [< d(Y )]<d(X).

[C. Costantini. On the density of the space of continuous and uniformly continuous
functions. Topology and its Applications, 153(7):1056–1078, 2006.]
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Metrizable Spaces - via δ

Corollary

Let X be a metrizable space and Y be a path connected metric
space. We have that

1 if Y is not GTB, then d(C(X,Y )) = d(Y )<δ(X);
2 if Y is GTB, then d(C(X,Y )) = [< d(Y )]<δ(X).

Corollary

Let X be a metrizable space and Y be a path connected separable
metric space then d(C(X,Y )) = 2<δ(X).
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Metrizable Spaces - via β

Theorem

Let X be a metrizable space then d(C(X)) = w(βX) = 2<δ(X).

Corollary

Let X be a metrizable, Lindelöff and non-compact space, then
w(βX) = c = 2ω
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Non-metrizable Spaces

Non-metrizable Spaces

Example

Let X = [0, ω1) with the order topology. Since X is pseudocompact
and βX = [0, ω1] we have that d(C(X)) = w(βX) = ω1 and since
δ(X) = ω2 we have that 2<δ(X) = 2ω1 > ω1.

C∗(X) is a connected component of 0 in C(X);
factor group (w.r. addition) C(X)/C∗(X) represents the system
of connected components of C(X) which are all homeomorphic
to C∗(X);

Proposition

Let X be a Tychonoff space then d(C(X)) = w(βX)|C(X)/C∗(X)|.
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Non-metrizable Spaces

Countably Paracompact T4 Spaces

Theorem
Let X be a countably paracompact T4 space then
d(C(X)) ≤ w(β(X × I)).

Proposition

Let X be a metrizable space or a pseudocompact space then
w(β(X × I)) = w(βX).

For which Tychonoff spaces X does w(β(X × I)) = w(βX) hold?
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Summary

Concerning the question when does d(C(X)) = w(βX) hold; we
know that for metrizable or pseudocompact X it is true;
for other spaces it can help to study C(X)/C∗(X);
and also to find when does w(βX) = w(β(X × I)) hold.
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