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Haar wavelets

The Haar wavelets on [0, 1] are defined in the following way:

Haar functions
Put xo(x)=1. fn=2+i—1,k=0,1,...,i=1,2,...,2% we put

2¢2,  ifwe (332, 31),
Xn(@) = =2*2, ifz € (351, 280),
0, it e (0, 1)\ [57F ],

and we agree that at each point of discontinuity

xn(2) = 3 (Xn(x + 0) + xn(z — 0)) and that at z = 0 and = = 1 Haar
functions are continuous from the right and from the left, respectively.
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rp(0) =1 and r, (1) = —1.

The Walsh functions are defined as the products of Rademacher
functions.

If n =302, n;2%, with n; € {0,1}, is the dyadic representation of n > 0,
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This dyadic representation of n is in fact finite and wy = 1.
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m-dimensional Walsh and Haar series

The m-dimensional Walsh and Haar series on the unit cube K = [0, 1]™
are defined in the following way:

m-dimensional Walsh an Haar series

Put
Z anwn Z Z Ay, me acl (1)
n=0

ny= =0 ’fLm—O

Z bnXn(x Z Z bny,...nm HXm ;) (2)
n=0

n1=0 N =0

where a,, and by, are real numbers and n = (ny, ..., ).
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Let Qg be the set of all dyadic-rational numbers in [0,1], i.e., the

numbers of the form 5% with 0 < j <2", n=0,1,2,.... The points

[0,1] \ Qg constitute the set of dyadic-irrational numbers in [0, 1].

one-dimensional dyadic interval

The one-dimensional dyadic intervals is

() ._|J i+l o on
I™ = [27,27}7 0<j<2"-1,

where n = 0,1,2,... is the rank of the interval IJ(").

4

m-dimensional dyadic interval

Let Z be the family of all m-dimensional dyadic intervals

(n) ._ 7(n1) (nm)
Ij '—Ijll ><-~~><Ijm

in K, where n = (ny,...,ny,) is the rank of Ij(n) and j = (41, -

(3)

s Jm) -

4
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m-dimensional dyadic interval

Let Qg be the set of all dyadic-rational numbers in [0,1], i.e., the

numbers of the form 5% with 0 < j <2", n=0,1,2,.... The points
[0,1] \ Qg constitute the set of dyadic-irrational numbers in [0, 1].

one-dimensional dyadic interval

The one-dimensional dyadic intervals is

(), [J JH1 < on
I; —[27,27}7 0<y<2" -1,

where n = 0,1,2,... is the rank of the interval IJ(").

m-dimensional dyadic interval

Let Z be the family of all m-dimensional dyadic intervals

I =10 o i) (3)

in K, where n = (ny,...,ny,) is the rank of Ij(n) and j = (J1,. -y Jm) -

4

We denote by (™ an arbitrary interval of rank n.
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Some remarks on m-dimensional dyadic interval

If x ={x1,...,2m} € K there exists a sequence of m-dimensional dyadic
intervals {I™} such that N, I™ = {x}.

We denote by int(E) the interior of a set E and by |E| the Lebesgue
measure of F.

It follows from the definitions of Wash and Haar function that for

n = (n1,..,ny) with 286=1 <n; <2k §=1 .. m, the functions xn
and wy, are constant in the interior of each dyadic interval of rank

k= (ki,..,km).

Moreover, with the same notation, the functions yx,, are supported by
some intervals of rank k — 1 = (k1 — 1,..., ky, — 1).
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N-th rectangular partial sum

If N = (Ny,...,N,), then the Nth rectangular partial sums Sy of series
(1) and (2) at a point x = (x1,...,Z;,) are
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Type of convergences

Rectangular and Regular of convergence

Rectangular convergence
The Walsh and Haar series rectangularly converges to sum S(x) at point
x if
Sn(x) = S(x) as min{N;} — co.
K3

The parameter of regularity of vector A = (ay,...,a,,) is defined as
reg(A) := min; ;{a;/a;}. In particular case the parameter of regularity

of a m-dimensional dyadic interval Ij(n)

reg(I{™) := min; ;{27 /27 }.

is defined as

Regular convergence

Let p € (0,1]; then the Walsh and Haar series p-regularly converges to
sum S(x) at a point x if

SN(x) = S(x) as min{N;} — oo and reg(N) > p.
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Quasi measure generated by series

We define an interval function ¢(I) on Z by ¢(Ij(k)) := [;00 Sox where
;
2k stand for (2k1,... 2km).

We note that if k; > k, in the sense of the coordinate-wise inequality,

then
/I.(k) Sle = /I.(k) SQk. (4)
J J

It is easy to check that this martingale property of the partial sums Sox
implies that the function v is additive on Z.

In dyadic analysis the function 1) is referred to as the quasi-measure
generated by the series.
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Quasi-measure

Since the sum Sy« is constant on interior of each Ij(k) we get

1 (1)
S2k(X) = W /I'(k) SQk =3 ‘ (5)

k
1119 119

for any point x € int(Ij(k)).
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for which it is the quasi-measure and (5) holds.
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intervals at x. The type of convergence of the series implies the
corresponding type of derivative.
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Quasi-measure

Since the sum Sy« is constant on interior of each Ij(k) we get

(k)
1 w(Ij )
5200 = g [ S = ©)
J) J dJ

for any point x € int(Ij(k)).

We notice that any additive function 1 on Z defines Walsh or Haar series
for which it is the quasi-measure and (5) holds.

So there is one-to-one correspondence between series and
quasi-measures.

The equality (5) gives a relation between convergence of partial sums of
the series and differentiability of ¢ with respect to the basis of dyadic
intervals at x. The type of convergence of the series implies the
corresponding type of derivative.

Considering various types of limits on the right side of (5) we get
corresponding type of the derivative with respect to dyadic system.
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In particular we will use the following D ,-derivative

Definition (d-derivative)

Given a function F' defined on Z, k = (K, ...,Kkm) the rank of the m-
dimensional interval I,((k), the upper and the lower d-derivatives of F' at a

point x, with respect to the dyadic system, are defined as

(k)
and D F(x):= liminf Flx)

min;k;—oo |I)(ck) |

b

(k)
DyF(x) := limsup Flx")

mink;— oo |I)((k |

respectively. If DyF(x) = D,F(x) we call this common value the d-
derivative DgF(x) at x. We say that F is d-differentiable at x if the
d-derivative at this point exists and is finite.

v
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In particular we will use the following D ,-derivative

Definition (d-derivative)

Given a function F' defined on Z, k = (K, ...,Kkm) the rank of the m-

dimensional interval I,((k), the upper and the lower d-derivatives of F' at a

point x, with respect to the dyadic system, are defined as

(k) (k)
Flx") and D F(x):= liminf Flx)

min;k;—oo |I)(ck) |

DyF(x) := limsup

mink;— oo |I)((k |

b

respectively. If DyF(x) = D,F(x) we call this common value the d-
derivative DgF(x) at x. We say that F is d-differentiable at x if the
d-derivative at this point exists and is finite.

v

If in the previous definition of d-derivative we consider limits with respect
the intervals being p-regular then we get the definition of p-regular
d-derivative. Using other types of the limits we get other derivatives (for
example the so called ordinary derivative)
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Quasi-measure and derivatives

At least at the points x with all coordinates being dyadic irrational, we
have

Convergence and differentiability

Jim S (x) = Dayp(x), (6)

(where k = (k1, ...k;,) — 0o means that min; k; — 00)

Therefore the convergence of the Walsh or Haar series at points x to a
sum f(x) implies d-differentiability of the function 1 at x with f(x)
being the value of d-derivative.

Once again the limit on (6) can be understood in various ways in
correspondence with the type of derivative.

This limit allow to reduce some problem on the convergence of series to
the corresponding problem of differentiability and viceversa.
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The following statement is essential for establishing that a given Walsh or
Haar series is the Fourier series in the sense of some general integral.

Proposition 1

Let some integration process A be given which produces an integral addi-
tive on Z. Assume a Walsh series or Haar series is given. Let a function ¢
defined on Z be the quasi-measure generated by this series and (5) holds.
Then this series is the Fourier series of an A-integrable function f if and
only if (1) = (A) [, f forany I € T.
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Quasi measure and Fourier series

The following statement is essential for establishing that a given Walsh or
Haar series is the Fourier series in the sense of some general integral.

Proposition 1

Let some integration process A be given which produces an integral addi-
tive on Z. Assume a Walsh series or Haar series is given. Let a function
defined on Z be the quasi-measure generated by this series and (5) holds.
Then this series is the Fourier series of an A-integrable function f if and
only if (1) = (A) [, f forany I € T.

The formula (5) and the proposition above give a simple method of
summation of any Walsh- or Haar-Fourier series of function f. This result
is useful even in one-dimensional case because Walsh-Fourier-Lebesgue
series can be divergent almost everywhere (example analogous to
Kolmogorov example)
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coefficients of orthogonal series.
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Remark on uniqueness of solution

Passing to the problem of coefficients of orthogonal series from their
sums note that it is a generalization of the uniqueness problem for the
coefficients of orthogonal series.

The convergence of series everywhere in formulation of the coefficients
problem can be replaced by convergence everywhere outside some
particular exceptional sets, so-called sets of uniqueness or U-sets. We
recall that a set F is said to be U-set for a system of functions if the
convergence of a series with respect to this system to zero outside the set
FE implies that all coefficients of the series are zero.
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For multidimensional Walsh series and rectangular convergence it was
proved by Skvortsov that the following set Z of points having at least
one dyadic-rational coordinate, i.e.,

Z:= [J(0, 17" % Qa x [0,1]™7).

i=1

is the set of uniqueness. So we can look for the solution of the problem
of recovering the coefficients for the series convergent outside of this set.
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Remark on uniqueness of solution

For multidimensional Walsh series and rectangular convergence it was
proved by Skvortsov that the following set Z of points having at least
one dyadic-rational coordinate, i.e.,

Z:= [J(0, 17" % Qa x [0,1]™7).

i=1

is the set of uniqueness. So we can look for the solution of the problem
of recovering the coefficients for the series convergent outside of this set.

In view of (6) and the above Proposition 1, in order to solve the
coefficient problem it is enough to show that the quasi-measure v
generated by Walsh series is the indefinite integral of its d-derivative
which exists at least on K \ Z.

By this we reduce the problem of recovering the coefficients to the one of

recovering the primitive and we can use the corresponding theorem on
primitives.
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Remark on uniqueness of solution

Note that the primitive we want to recover is differentiable not
everywhere but outside an exceptional set. In our case it will be the set
Z. We have to investigate continuity assumptions which should be
imposed on the primitive at the points of exceptional sets to guarantee
its uniqueness.
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continuity (shortly dS-continuity) with respect to the basis.
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quasi-measure related to the convergent series is not defined, is not
countable in dimension greater than one.
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Remark on uniqueness of solution

Note that the primitive we want to recover is differentiable not
everywhere but outside an exceptional set. In our case it will be the set
Z. We have to investigate continuity assumptions which should be
imposed on the primitive at the points of exceptional sets to guarantee
its uniqueness.

It can be shown that usual continuity with respect to the dyadic basis
(we shall call it d-continuity) is not enough for this purpose and we
introduce a stronger notion of continuity, which we shall call local Saks
continuity (shortly dS-continuity) with respect to the basis.

A usual way to solve the problem of primitive is to use a
Kurzweil-Henstock-type integral. Unfortunately, in contrast with the one
dimensional case, the exceptional set where the derivative of the
quasi-measure related to the convergent series is not defined, is not
countable in dimension greater than one.

Because of it the Kurzweil-Henstock-type approach does not work. So we
shall define, for our goal a Perron-type integral based on dS-continuity.
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d-Continuity

Definition (Continuity in dyadic setting)

We say that a set-function F' defined on Z, is continuous at a point x,
with respect to the m-dimensional dyadic intervals, briefly d-continuous, if
for any sequence of m-dimensional dyadic intervals I,((“) containing x, the
value of function F' on these intervals tends to zero together with diameter
of the intervals.
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d-Continuity in sense of Saks

We recall that an interval function F is said to be continuous in the
sense of Saks if lim|7|_,o, /(1) = 0. We define a local version of such a
continuity applied to m-dimensional dyadic setting.
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We recall that an interval function F is said to be continuous in the
sense of Saks if lim|7|_,o, /(1) = 0. We define a local version of such a
continuity applied to m-dimensional dyadic setting.

Definition (dS-continuity)

We say that a function F’ defined on Z is locally d-continuous in the sense
of Saks, or briefly dS-continuous, at a point x if

lim F(I) =0
|I|]—0
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d-Continuity in sense of Saks

We recall that an interval function F is said to be continuous in the
sense of Saks if lim|7|_,o, /(1) = 0. We define a local version of such a
continuity applied to m-dimensional dyadic setting.

Definition (dS-continuity)

We say that a function F’ defined on Z is locally d-continuous in the sense
of Saks, or briefly dS-continuous, at a point x if

lim F(I) =0
|I|]—0

v

In the two-dimensional case the last equality can be rewritten in terms of
ranks of m-dimensional dyadic intervals in the following way:

lim FI%D) =o.
k+%r—I>1<>o =0
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dS-continuity of quasi measure

We deduce dS-continuity of quasi-measure from some properties of
coefficients of the series. To simplify calculation, we shall formulate most
of the results for the two-dimensional case, but all of them are true for
any dimension.
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any dimension.
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dS-continuity of quasi measure

We deduce dS-continuity of quasi-measure from some properties of
coefficients of the series. To simplify calculation, we shall formulate most
of the results for the two-dimensional case, but all of them are true for
any dimension.

Lemma (dS-continuity of quasi-measure for Wash case)

If a two-dimensional Walsh series is rectangular convergent on the “cross”
{a x[0,1]} U{[0, 1] x b}, where a,b ¢ Qg4, everywhere except a countable
set, then at each point (z,y) € K the quasi-measure v is dS-continuous,
i.e., limjjo F'(Ix) = 0 everywhere on K.
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dS-continuity of quasi measure

We deduce dS-continuity of quasi-measure from some properties of
coefficients of the series. To simplify calculation, we shall formulate most
of the results for the two-dimensional case, but all of them are true for
any dimension.

Lemma (dS-continuity of quasi-measure for Wash case)

If a two-dimensional Walsh series is rectangular convergent on the “cross”
{a x[0,1]} U{[0, 1] x b}, where a,b ¢ Qg4, everywhere except a countable
set, then at each point (z,y) € K the quasi-measure v is dS-continuous,
i.e., limjjo F'(Ix) = 0 everywhere on K.

\

Lemma (dS-continuity of quasi-measure Haar case)

If a two-dimensional Haar series is rectangular convergent everywhere on
the unit square K, then at each point (x,y) € K the quasi-measure v is
dS-continuous, i.e., lim ;o F(Ix) = 0 at x = (z, ).

N,
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dS-continuity of quasi measure

We deduce dS-continuity of quasi-measure from some properties of
coefficients of the series. To simplify calculation, we shall formulate most
of the results for the two-dimensional case, but all of them are true for
any dimension.

Lemma (dS-continuity of quasi-measure for Wash case)

If a two-dimensional Walsh series is rectangular convergent on the “cross”
{a x[0,1]} U{[0, 1] x b}, where a,b ¢ Qg4, everywhere except a countable
set, then at each point (z,y) € K the quasi-measure v is dS-continuous,
i.e., limjjo F'(Ix) = 0 everywhere on K.

\

Lemma (dS-continuity of quasi-measure Haar case)

If a two-dimensional Haar series is rectangular convergent everywhere on
the unit square K, then at each point (x,y) € K the quasi-measure v is
dS-continuous, i.e., lim ;o F(Ix) = 0 at x = (z, ).

\

Note that the p-regular convergence, even everywhere on K does not
imply dS-continuity of the corresponding quasi-measure (Plotnikov 2007).
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Perron type approach

Definition (dS-major and d.S-minor functions)

Let f be a point-function defined at least on K \ Z. An additive interval
function M (resp., m) defined on Z dS-continuous on K is called a dS-
major (resp., dS-minor) function of f if the lower (resp., the upper) d-
derivative satisfies the inequality

D,M(x) > f(x) (resp. Dgm(x) < f(x)) for all x€ K\ Z.




Perron type integral
[ o]

Perron type approach

Definition (dS-major and d.S-minor functions)

Let f be a point-function defined at least on K \ Z. An additive interval
function M (resp., m) defined on Z dS-continuous on K is called a dS-
major (resp., dS-minor) function of f if the lower (resp., the upper) d-
derivative satisfies the inequality

D,M(x) > f(x) (resp. Dgm(x) < f(x)) for all x€ K\ Z.

Lemma (monotonicity)

Let an additive interval function R on Z be dS-continuous on K and satisfy
the inequality D ;R(x) > 0 for all x € K\ Z. Then R(I) > 0 for any
interval I € 7.

4
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Perron dyadic Saks continuous integral

Let M and m be a dS-major and a dS-minor function for a point-function
f on K. Then for each interval I € Z we have M (I) > m(I).




Perron type integral
oe

Perron dyadic Saks continuous integral

Let M and m be a dS-major and a dS-minor function for a point-function
f on K. Then for each interval I € Z we have M (I) > m(I).

It implies that for any function f we have infy;{M (K)} > sup,,{m(K)}
where “inf” and “sup” are taken over all dS-major and dS-minor
function of f, respectively. This justifies the following definition.
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Perron dyadic Saks continuous integral

Let M and m be a dS-major and a dS-minor function for a point-function
f on K. Then for each interval I € Z we have M (I) > m(I).

It implies that for any function f we have infy;{M (K)} > sup,,{m(K)}
where “inf” and “sup” are taken over all dS-major and dS-minor
function of f, respectively. This justifies the following definition.

Definition (PyS — integral)

A point-function f defined at least on K\ Z is said to be P;S-integrable on
K, if there exists at least one dS-major function and at least one dS-minor
function of f and

—00 < i]I\14f{M(K)} = sllnp{m(K)} < +00

where “inf’ and “sup” are taken as above. The common value is called
P;S-integral of f on K and is denoted by (PyS) [} f.
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Recovering primitive by P;S-integral

Directly from the definitions we get the following result which shows that
the PyS-integral solves the problem of recovering the primitive from its
d-derivative in the form we need.
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Recovering primitive by P;S-integral

Directly from the definitions we get the following result which shows that
the PyS-integral solves the problem of recovering the primitive from its
d-derivative in the form we need.

Theorem (on recovering primitive)

If an additive dS-continuous interval function F' on Z is d-differentiable
with DyF (x) = f(x) everywhere on K \ Z then the function f is PyS-
integrable on K and F is its indefinite P;S-integral.
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Recovering primitive by P;S-integral

Directly from the definitions we get the following result which shows that
the PyS-integral solves the problem of recovering the primitive from its
d-derivative in the form we need.

Theorem (on recovering primitive)

If an additive dS-continuous interval function F' on Z is d-differentiable
with DyF (x) = f(x) everywhere on K \ Z then the function f is PyS-
integrable on K and F is its indefinite P;S-integral.

If in the above definition of minor and major functions we assume that
inequalities for derivatives are fulfilled everywhere on K and we
substitute the assumption of dS-continuity with the d-continuity, we get
the definition of Py integral (which by the way is equivalent to the dyadic
Kurzweil-Henstock Hg4-integral).
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Recovering primitive by P;S-integral

We note the above monotonicity lemma together with its symmetric
version
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Recovering primitive by P;S-integral

We note the above monotonicity lemma together with its symmetric
version

Lemma (monotonicity)

Let an additive interval function R on Z be dS-continuous on K and satisfy
the inequality DgR(x) <0 for all x € K\ Z. Then R(I) < 0 for any
interval I € 7.

implies the theorem on the uniqueness of the primitive
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Recovering primitive by P;S-integral

We note the above monotonicity lemma together with its symmetric
version

Lemma (monotonicity)

Let an additive interval function R on Z be dS-continuous on K and satisfy
the inequality DgR(x) <0 for all x € K\ Z. Then R(I) < 0 for any
interval I € 7.

implies the theorem on the uniqueness of the primitive

Theorem (Uniqueness of primitive)

Let an additive interval function R on Z be dS-continuous on K and satisfy
the equality DyR(x) = 0 for all x € K\ Z. Then R(I) = 0 for any
interval I € 7.
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Recovering primitive by P;S-integral

In the above theorem the stronger assumption of dS-continuity of F' is
essential. In fact if we suppose only d-continuity for the additive function
F we will lose the uniqueness of primitive for set function. This example
of function F defined in K = [0, 1] x [0,1] can show it:
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Recovering primitive by P;S-integra

In the above theorem the stronger assumption of dS-continuity of F' is
essential. In fact if we suppose only d-continuity for the additive function
F we will lose the uniqueness of primitive for set function. This example
of function F defined in K = [0, 1] x [0,1] can show it:

1 if A=K
F(A)={ 0 if A=Twith In({0}x[0,1])=0

& if A=19x 1"

and using the additivity we extend the definition of this function F' on
any I € 7.
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Recovering primitive by P;S-integra

In the above theorem the stronger assumption of dS-continuity of F' is
essential. In fact if we suppose only d-continuity for the additive function
F we will lose the uniqueness of primitive for set function. This example
of function F defined in K = [0, 1] x [0,1] can show it:

1 if A=K
F(A) =< 0 if A=Twith IN({0}x[0,1]) =10

& if A=19x 1"
and using the additivity we extend the definition of this function F' on
any I € 7.

This function, not being trivial, has derivative equal zero everywhere in
K\ {0} x [0,1].
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P,;S-integral

The next theorem shows in particular that the P;-integral, constructed
for function defined on K using d-continuous functions instead of dS-
continuous, (and also the equivalent Hg-integral) fails to solve the
problem of recovering the primitive under assumption of the above
theorem (with the exceptional set Z).
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P,;S-integral

The next theorem shows in particular that the P;-integral, constructed
for function defined on K using d-continuous functions instead of dS-
continuous, (and also the equivalent Hg-integral) fails to solve the
problem of recovering the primitive under assumption of the above
theorem (with the exceptional set Z).

There exists a dS-continuous function ® which is d-differentiable every-
where on [0,1]%\ ({0} x [0,1]) but its d-derivative D,(®) being PyS-
integrable is not Pj;-integrable.

We mention although Hg-integral is dS-continuous we do not know
whether it can be defined by Perron method using d.S-continuous major
and minor functions. In this connection we are leaving open the following
problem:
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P,;S-integral

The next theorem shows in particular that the P;-integral, constructed
for function defined on K using d-continuous functions instead of dS-
continuous, (and also the equivalent Hg-integral) fails to solve the
problem of recovering the primitive under assumption of the above
theorem (with the exceptional set Z).

There exists a dS-continuous function ® which is d-differentiable every-
where on [0,1]%\ ({0} x [0,1]) but its d-derivative D,(®) being PyS-
integrable is not Pj;-integrable.

We mention although Hg-integral is dS-continuous we do not know
whether it can be defined by Perron method using d.S-continuous major
and minor functions. In this connection we are leaving open the following
problem:

Open Problem
Is any Pj-integrable function P;S-integrable?
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Main results

Applying the equality (5), then “cross” lemma related to the
dS-continuity of quasi measure, theorem on recovering the primitive and
the proposition giving necessary and sufficient condition for series to be
Fourier series, we can formulate the main theorem for Walsh series:
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Main results

Applying the equality (5), then “cross” lemma related to the
dS-continuity of quasi measure, theorem on recovering the primitive and
the proposition giving necessary and sufficient condition for series to be
Fourier series, we can formulate the main theorem for Walsh series:

Theorem (recovering coefficients for Walsh series)

If a two-dimensional Walsh series is rectangular convergent to a sum f
everywhere in K \ Z then f is P;S-integrable on K and the coefficients
of the series are P;S-Fourier coefficients of f.

Using corresponding propositions and lemma for Haar series we get
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Main results

Applying the equality (5), then “cross” lemma related to the
dS-continuity of quasi measure, theorem on recovering the primitive and
the proposition giving necessary and sufficient condition for series to be
Fourier series, we can formulate the main theorem for Walsh series:

Theorem (recovering coefficients for Walsh series)

If a two-dimensional Walsh series is rectangular convergent to a sum f
everywhere in K \ Z then f is P;S-integrable on K and the coefficients
of the series are P;S-Fourier coefficients of f.

Using corresponding propositions and lemma for Haar series we get

Theorem (recovering coefficients for Haar series)

If a two-dimensional Haar series is rectangular convergent to a sum f
everywhere in K then f is PyS-integrable on K and the coefficients of the
series are P;S-Fourier coefficients of f.
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Remark on uniqueness of solution

In the multidimensional case the solution of the uniqueness of coefficients
depends on the type of convergence. In Haar series with p-regular
convergence the theorem of uniqueness is not always true. Let us
mention an interesting result obtained by Plotnikov who proved by
constructing an example that for p-regular convergence with p € (?, 1]
(in particular for so called cubic convergence) the theorem of uniqueness
does not hold. If the uniqueness is guarantied then the complete solution
of the problem of recovering the coefficients of a summable series with
respect to some system means that a process of integration is developed
so that any such a series is the Fourier series of its sum, in the sense of
this integral. More complicated types of continuity and corresponding
types of Perron integral were introduced by Plotnikov to deal with the
p-regular convergent series with p close to zero.
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