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Classes of surjective functions
algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A’ of A with A" C X U {0}.
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classes of surjective functions

f:R—R
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Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A" of A with A" C X U {0}.
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f:R—>R
f € ES if f(U) =R for every nonempty open set U C R;
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algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A" of A with A" C X U {0}.

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f e SES if |[UN F~Y(x)| = ¢ for every nonempty open set U C R and every
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Classes of surjective functions
algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A’ of A with A" C X U {0}.

| A\

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f € SES if |[UN f~1(x)| = ¢ for every nonempty open set U C R and every
x € R;

f € PES if f(P) =R for every perfect set P C R;
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Classes of surjective functions

algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A’ of A with A" C X U {0}.

| A

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f € SES if |[UN f~1(x)| = ¢ for every nonempty open set U C R and every
x € R;

f € PES if f(P) =R for every perfect set P C R;

feJif fNK #0 for every closed set K C R? with uncountable projection on
X-axis.

v
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Classes of surjective functions
algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A" of A with A" C X U {0}.

v

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f e SES if |[UN F~Y(x)| = ¢ for every nonempty open set U C R and every

x € R;

f € PES if f(P) =R for every perfect set P C R;

feJif fNK #0 for every closed set K C R? with uncountable projection on
X-axis.

v

J CPES CSES C ES;
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Classes of surjective functions
algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A" of A with A" C X U {0}.

v

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f e SES if |[UN F~Y(x)| = ¢ for every nonempty open set U C R and every

x € R;

f € PES if f(P) =R for every perfect set P C R;

feJif fNK #0 for every closed set K C R? with uncountable projection on
X-axis.

v

J CPES C SES C €S,
Real Jones functions J is 2°-lineable (Gdmez-Merino, 2011);
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Classes of surjective functions
algebrability

Let A be a linear algebra. We say that X C A is (strongly) x-algebrable if there
is (free) r-generated subalgebra A’ of A with A" C X U {0}.

v

classes of surjective functions

f:R—R

f € ES if f(U) =R for every nonempty open set U C R;

f e SES if |[UN F~Y(x)| = ¢ for every nonempty open set U C R and every

x € R;

f € PES if f(P) =R for every perfect set P C R;

feJif fNK #0 for every closed set K C R? with uncountable projection on
X-axis.

v

J CPES C SES CES;
Real Jones functions J is 2°-lineable (Gdmez-Merino, 2011);
PES(C) is strongly 2°-algebrable (Bartoszewicz, G. & Paszkiewicz, 2013);

A\
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Algebrability of complex Jones functions

Is J(C) strongly 2°-algebrable?
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Algebrability of complex Jones functions

Is J(C) strongly 2°-algebrable?

For every n € N let H" be a set of surjective functions h : C" — C such that
|H"| < c.
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Algebrability of complex Jones functions

Is J(C) strongly 2°-algebrable?

For every n € N let H" be a set of surjective functions h : C" — C such that
|H"| < c.

Theorem

There is a family {f; : £ < 2°} C C° such that for any n € N, any h € H{" and
distinct ordinals {1 < & < -+ < &, < 2° we have h(fe,,...,f,) € J(C).
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Algebrability of complex Jones functions

Is J(C) strongly 2°-algebrable?

For every n € N let H" be a set of surjective functions h : C" — C such that
|H"| < c.

There is a family {f; : £ < 2°} C C° such that for any n € N, any h € H{" and
distinct ordinals {1 < & < -+ < &, < 2° we have h(fe,,...,f,) € J(C).In
particular, the family of complex Jones functions is strongly 2°-algebrable.
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Closed algebrability

Question

Aron, Conejero, Peris and Seoane-Sepllveda [Algebrability of the set of
everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14
(2007), no. 1, 25-31] posed the following problem:
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Closed algebrability

Aron, Conejero, Peris and Seoane-Sepllveda [Algebrability of the set of
everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14
(2007), no. 1, 25-31] posed the following problem:

Characterize when there exists a closed infinite dimensional algebra of
functions with a particular "strange” property?
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Closed algebrability

Aron, Conejero, Peris and Seoane-Sepllveda [Algebrability of the set of
everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14
(2007), no. 1, 25-31] posed the following problem:

Characterize when there exists a closed infinite dimensional algebra of
functions with a particular "strange” property?

topologies on CX and R

Tp — pointwise topology
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Tp — pointwise topology
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Closed algebrability

Aron, Conejero, Peris and Seoane-Sepllveda [Algebrability of the set of
everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14
(2007), no. 1, 25-31] posed the following problem:

Characterize when there exists a closed infinite dimensional algebra of
functions with a particular "strange” property?

topologies on CX and R
Tp — pointwise topology
Ty — uniform topology

4

Let A be a subalgebra of CX or RX. Then for any f € A the characteristic
function of {x € X : f(x) # 0} is in cl.,(A).
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Closed algebrability

algebra A(f)
Let f € RX (or f € C¥).

Szymon Gtab (and Artur Bartoszewicz) Algebrability and strange functions



Closed algebrability

algebra A(f)
Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.
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algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.

There exists 7,-closed algebra A of cardinality 2° such that A\ {0} consists of
complex perfectly everywhere surjective functions.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.

There exists 7,-closed algebra A of cardinality 2° such that A\ {0} consists of
complex perfectly everywhere surjective functions.

Let {Be : £ < ¢} be a decomposition of C into ¢ many Bernstein sets.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.

There exists 7,-closed algebra A of cardinality 2° such that A\ {0} consists of
complex perfectly everywhere surjective functions.

Let {B¢ : £ < ¢} be a decomposition of C into ¢ many Bernstein sets.For any
& < clet fe : Be — C a free generator such that algebra generated by f;
consists of perfectly everywhere surjective functions.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.

There exists 7,-closed algebra A of cardinality 2° such that A\ {0} consists of
complex perfectly everywhere surjective functions.

Let {B¢ : £ < ¢} be a decomposition of C into ¢ many Bernstein sets.For any
& < clet fe : Be — C a free generator such that algebra generated by f;
consists of perfectly everywhere surjective functions.Put
f:U§<Cf§:(C—>(C.
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Closed algebrability

algebra A(f)

Let f € RX (or f € CX).Fix the partition {B¢ : £ < x} of X.

A(f) ={J fe : fe € Ac}

E<k

where Ag¢ is a subalgebra of RB¢ or CB¢ generated by f | Be.

Assume that f | Be is unbounded for every £ < k. Then A(f) is 7,-closed.

There exists 7,-closed algebra A of cardinality 2° such that A\ {0} consists of
complex perfectly everywhere surjective functions.

Let {B¢ : £ < ¢} be a decomposition of C into ¢ many Bernstein sets.For any
& < clet fe : Be — C a free generator such that algebra generated by f;
consists of perfectly everywhere surjective functions.Put

f=Ucc fe : C— C.Then A(f) is a desired algebra.
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite.
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite. It was proved (Bartoszewicz, Bienias & G.,
2012) that EDF is 2°-algebrable
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite. It was proved (Bartoszewicz, Bienias & G.,
2012) that EDF is 2°-algebrable(but not strongly 1-algebrable).
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite. It was proved (Bartoszewicz, Bienias & G.,
2012) that EDF is 2°-algebrable(but not strongly 1-algebrable).

4

Let A C EDF U {0} be an algebra.
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite. It was proved (Bartoszewicz, Bienias & G.,
2012) that EDF is 2°-algebrable(but not strongly 1-algebrable).

4

Let A C EDF U {0} be an algebra.Then A is 7,-closed if and only if A is
finitely generated.
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Closed algebrability

everywhere discontinuous functions with finite range

By EDF denote the family of all functions f : R — R which are everywhere
discontinuous and f(R) is finite. It was proved (Bartoszewicz, Bienias & G.,
2012) that EDF is 2°-algebrable(but not strongly 1-algebrable).

4

Let A C EDF U {0} be an algebra.Then A is 7,-closed if and only if A is
finitely generated.

y

There is a linear algebra A C R¥ of 2° generators such that for any function
f € cl-,(A) \ {0} there is open set U such that f~'(U) is a Bernstein set.

A,
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if
Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A’ = Aand A' = Y\ A
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if
Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where

A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if
Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where

A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.
Proof.:

Let {B. : & < ¢} be a partition of R into ¢ many Bernstein sets.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let
{A¢ : £ < 2°} be a o-independent family on c.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Cf = U{Ba RS Ag}.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : { <2°}.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function

f= Zin:l ckXp, Where Dy are Boolean combinations of C¢,, ..., C¢

n-
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C; : £ € X}.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, £ € X.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, £ € X. Then Ba C xR\ Ce.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, { € X. Then Bo C (,cx R\ C¢.Thus f, [ Bo =0
and f | B, = 0.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, { € X. Then Bo C (,cx R\ C¢.Thus f, [ Ba =0
and f [ B, = 0.Since f(x) # 0 for some x € R, there is § > 0 such that
FH(f(x) — 6, f(x) + 6) is disjoint with £71(0).
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, { € X. Then Bo C (,cx R\ C¢.Thus f, [ Ba =0
and f [ B, = 0.Since f(x) # 0 for some x € R, there is § > 0 such that
FH(f(x) — 6, f(x) + 6) is disjoint with £f71(0).But f is Bx-measurable,
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function
f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, { € X. Then Bo C (,cx R\ C¢.Thus f, [ Ba =0
and f [ B, = 0.Since f(x) # 0 for some x € R, there is § > 0 such that
FH(f(x) — 6, f(x) + 6) is disjoint with £f71(0).But f is Bx-measurable,
f~(f(x) — 6, f(x) + &) contains a Bernstein set of the form Neex Cg(g) for
some ¢ : X — {0,1}.
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There is a linear algebra A C RR of 2¢ generators such that for any function

f € cl. (A) \ {0} there is open set U such that f—(U) is a Bernstein set.

A family {As : @ < k} of subset of Y is called o-independent, if

Naex A:(®) £ ) for every countable set X C k and every € : X — {0, 1} where
A° = A and A' = Y \ A.By the Tarski theorem there exists a o-independent
family on ¢ of cardinality 2°.

Proof.:

Let {Ba : o < ¢} be a partition of R into ¢ many Bernstein sets.Let

{A¢ : £ < 2°} be a o-independent family on c¢.For any £ < 2° put

Ce = U{Ba : @ € A¢}.Let B be a o-algebra generated by {C¢ : £ < 2°}.

Let A be an algebra generated by {xc, : £ <2°}.f € Ais a simple function

f= Zin:l ckxp, Where Dy are Boolean combinations of C¢,, ..., C¢, .If

f € clr,(A)\ {0}, then there are f, € A which tend pointwisely to f.Let

X C 2° be the smallest set such that each f, is measurable with respect to
o-algebra Bx generated by {C¢ : £ € X}.X is countable. There is @ < ¢ which
does not belong to any A¢, { € X. Then Bo C (,cx R\ C¢.Thus f, [ Ba =0
and f [ B, = 0.Since f(x) # 0 for some x € R, there is § > 0 such that
FH(f(x) — 6, f(x) + 6) is disjoint with £f71(0).But f is Bx-measurable,
f~(f(x) — 6, f(x) + &) contains a Bernstein set of the form Neex Cg(g) for
some ¢ : X — {0, 1}.A set which contains a Bernstein set and is disjoint with
some other Bernstein set is also a Bernstein set.
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Thank you for your attention!
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