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Definition 1
Let (X , ·) be a topological group. A function f : X → Y is called microperiodic if
there exists a dense subset P of X such that

f (px) = f (x), x ∈ R, p ∈ P.

Proposition 1

Let (X , ·) be a topological group, P dense subset of X . If f : X → R satisfying

f (px) ¬ f (x), x ∈ X , p ∈ P, (m)

is continuous at some x0 ∈ X , then it is constant.

Definition 2
Let (X , ·) be a topological group. We say that a multifunction F : X → 2Y is
microperiodic if there exists a dense subset P of X such that

F (px) ⊂ F (x), x ∈ X , p ∈ P. (M)

Let A,B ⊂ Y . Multifunction F : R→ 2Y of the form

F (x) =

{
A for x ∈ Q,
B for x /∈ Q

is microperiodic.
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Let X ,Y be topological spaces, F : X → 2Y .

F is upper semicontinuous (usc) at x0 ∈ X if for every open set V ⊂ Y such that
F (x0) ⊂ V there exists U ∈ N (x0) such that F (x) ⊂ V for every x ∈ U,

F is lower semicontinuous (lsc) at x0 ∈ X if for every open set V ⊂ Y such that
F (x0) ∩ V 6= ∅ there exists U ∈ N (x0) such that F (x) ∩ V 6= ∅ for every x ∈ U,

F is continuous at x0 if it is upper and lower semicontinuous at this point.

If (Y , d) is a metric space, A,B ⊂ Y , define

e(A,B) := sup{d(a,B) : a ∈ A},
h(A,B) := max{e(A,B), e(B,A)},

where d(a,B) := inf{d(a, b), b ∈ B}.

Let X be a topological space, (Y , d) is a metric space, F : X → P(Y ),

F is h-upper semicontinuous (h-usc) at x0 ∈ X if x 7→ e(F (x),F (x0)) is
continuous at x0,

F is h-lower semicontinuous (h-lsc) at x0 if x 7→ e(F (x0),F (x)) is continuous at
x0,

F is h-continuous at x0 if it is h-usc and h-lsc at x0.
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Example 1

1 F1(x) =

{
[0, 1] for x ∈ Q,
(0, 1) for x /∈ Q

2 F2(x) =

{
(0, 1) for x ∈ Q,
(0, 1) \ { 1

2} for x /∈ Q

3 F3(x) =

{
[0, 1] for x ∈ Q,
Q ∩ [0, 1] for x /∈ Q

h(Fi (x),Fi (y)) = 0, x , y ∈ R

each Fi is h-continuous on R
each Fi is lsc on R
each Fi is usc only on Q
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Theorem 1
Let X be a topological group, Y a metric space, F : X → P(Y ) a microperiodic
multifunction. If F is h-continuous at some x0, then the multifunction F is constant.

Proof.

1 Define f (x) := e(F (x0),F (x)), x ∈ X

2 f (x) ¬ f (px), x ∈ X , p ∈ P

3 f is continuous at x0

4 f is constant, therefore e(F (x0),F (x)) = f (x) = f (x0) = e(F (x0),F (x0)) = 0 for
x ∈ X

5 F (x0) ⊂ F (x), x ∈ X

6 g(x) := e(F (x),F (x0)), x ∈ X

7 F (x) ⊂ F (x0) ⊂ F (x)
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Theorem 2
Assume that X is a topological group, Y a normed space, F : X → Pfc (Y ) is a
microperiodic multifunction. If F is lsc at x0 and usc at x0 (Y endowed with the weak
topology), then it is constant.

Proof.

1 y∗ ∈ Y ∗

2 fy∗ (x) := σ(y∗,F (x)) = sup{(y∗, y) : y ∈ F (x)}, x ∈ X

3 fy∗ is continuous at x0

4 fy∗ (px) ¬ fy∗ (x), x ∈ X , p ∈ P

5 fy∗ is constant

6 σ(y∗,F (x)) = σ(y∗,F (x0)) for x ∈ X

7 by the separation theorem F (x) = F (x0), x ∈ X
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Theorem 3
Assume that X is a topological group, Y a topological space, F : X → P(Y ) a
microperiodic multifunction with open values. If F is usc on some open neighborhood
of x0, then it is constant.
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Let (X ,M) be a measurable space, (Y , d) a separable metric space, F : X → 2Y

F is weakly measurable (measurable for short) if the lower inverse image
F−(U) := {x ∈ X : F (x) ∩ C 6= ∅} is measurable for every open set U ⊂ Y

F is strongly measurable if the lower inverse image
F−(C) := {x ∈ X : F (x) ∩ C 6= ∅} is measurable for every closed set C ⊂ Y

Example 2

Let A,B ⊂ Y , P ⊂ X is dense and for every p ∈ P the following condition holds

px ∈ P, for x ∈ P and px ∈ X \ P, for x ∈ X \ P.

F (x) =

{
A for x ∈ P,
B for x ∈ X \ P .

F is microperiodic

F strongly measurable iff P ∈M

Example 3

Let f : R→ R be an additive function with small graph (i.e. card f (R) = ℵ0).
Assume that C ∈ P(R) such that d(0,C) > 0.

F (x) = |f (x)| · C = {|f (x)| · c : c ∈ C}, x ∈ R
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Theorem 4
Let X be a topological group, (Y , d) a separable metric space, P a dense subset of X .
Assume that X is locally compact (of the second category, respectively),
F : X → P(Y ) is H-measurable (B-measurable) satysfying one of the conditions

(i) F is microperiodic multifunction,

(ii) P is countable and F (px) ⊂ F (x) a.e. for every p ∈ P.

Then F is constant a.e..

Theorem 5
Let I ⊂ R be a nontrivial interval, P a dense subset of R. If F : I → P(R) is
L-measurable (B-measurable, respectively) and there exists E ∈ L0 (E ∈ B0) such that

F (x + p) ⊂ F (x) for every x ∈ I \ E , p ∈ P such that x + p ∈ I ,

then F is constant a.e..
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Proposition 2 (Theorem 2 in [5])
Assume that X is a topological group, P ⊂ X a dense set, (Y , d) is a metric space.
Let ε ­ 0 and let f : X → Y satisfies

d(f (px), f (x)) ¬ ε, x ∈ X , p ∈ P.

If f is continuous at some x0, then

d(f (x), f (x0)) ¬ ε, x ∈ X .

Theorem 6
Assume that X is a topological group, P ⊂ X a dense set, Y is a metric space. Let
ε ­ 0 and let F : X → P(Y ) satisfies

e(F (x),F (px)) ¬ ε, x ∈ X , p ∈ P. (1)

If F is h-continuous at some x0, then

h(F (x),F (x0)) ¬ ε, x ∈ X .
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Corollary 1

Assume that X is a topological group, P ⊂ X a dense set, Y is a normed space. Let
C ⊂ Y and let F : X → P(Y ) satisfies

F (px) ⊂ F (x) + C , x ∈ X , p ∈ P.

If F is h-continuous at some x0 and there exists y0 ∈ Y and ε > 0 such that
C ⊂ y0 + εS (S is the closed unit ball in Y ), then

h(F (x),F (x0)) ¬ ‖y0‖+ ε, x ∈ X .

Corollary 2

Assume that X is a topological group, P ⊂ X a dense set, Y is a normed space. Let
C ⊂ Y and let f : X → Y satisfies

f (px) ∈ f (x) + C , x ∈ X , p ∈ P.

If f is continuous at some x0 and there exists y0 ∈ Y and ε > 0 such that
C ⊂ y0 + εS (S is the closed unit ball in Y ), then

‖f (x)− f (x0)‖ ¬ ‖y0‖+ ε, x ∈ X .
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