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Background

The lower and the upper densities of A ⊂ ω are given by the
formulas

d(A) = lim inf
n→∞

card(A ∩ n)

n

d(A) = lim sup
n→∞

card(A ∩ n)

n
.

If d(A) = d(A), we say that the natural density of A exists and it
is denoted by d(A).
We say that a sequence (xn) of real numbers is statistically
convergent to g ∈ R if for any ε > 0 we have

d({n ∈ ω : |g − xn| > ε}) = 0.
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Background

Let X be any set. A family I ⊂ P(X ) is called an ideal on X
whenever

∅ ∈ J and X /∈ J,

if A,B ∈ J then A ∪ B ∈ J,

A ⊂ B and B ∈ J then A ∈ J.

We will consider ideals on ω. In this case it is natural to assume
that considered ideals contains Fin (ideal of finite subsets of ω).

An ideal I on ω is called a P-ideal if for every sequence (An)n∈ω of
sets in I there is a set A ∈ I such that An ⊂∗ A for all n ∈ ω
(where An ⊂∗ A means that An \ A ∈ Fin).

Every ideal I on ω can be treated as a subset of the Cantor space
2ω since P(ω) and 2ω can be identified via the characteristic
functions.
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Submeasures

A submeasure on ω is a function ϕ : P(ω)→ [0,∞] such that:

ϕ(∅) = 0;

if A ⊂ B then ϕ(A) ≤ ϕ(B),

ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B),

ϕ({n}) <∞ for all n ∈ ω.

A submeasure ϕ is called a lower semicontinuos submeasure (in
short, lscsm) if ϕ(A) = limn→∞ ϕ(A ∩ n) for all A ⊂ ω. For any
lscsm ϕ, we consider two ideals given by

Exh(ϕ) = {A ⊂ ω : lim
n→∞

ϕ(A \ n) = 0}.

Fin(ϕ) = {A ⊂ ω : ϕ(A) <∞}.
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Submeasures

Let ϕ be a lscsm. Then Exh(ϕ) is an Fσδ P-ideal, Fin(ϕ) is an Fσ
ideal and Exh(ϕ) ⊂ Fin(ϕ).

Theorem [Mazur, Solecki]

Let I be an ideal on ω. Then

I is an Fσ ideal if and only if I = Fin(ϕ) for some lscsm ϕ.

I is an analytic P-ideal if and only if I = Exh(ϕ) for some
lscsm ϕ.

I is an Fσ P-ideal if and only if I = Fin(ϕ) = Exh(ϕ) for
some lscsm ϕ.

If I is ideal on ω then it is not a Gδ set.
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Background

We define a density ideal Id as Id := {A ⊂ ω : d(A) = 0}. It may
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Das, Bhunia, Pal

In 2012 Das, Bhunia and Pal generalizated statistical convergence.
They introduced upper and lower densities of order α ∈ (0, 1] in
the following way:

dα(A) = lim inf
n→∞

card(A ∩ n)

nα

dα(A) = lim sup
n→∞

card(A ∩ n)

nα
.

If dα(A) = dα(A), we say that the natural density of order α of A
exists and denote it by dα(A).
They considered possible consequences of such idea, especially
properties of α-statistically convergent sequences.
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Main part

This idea can go further. We fix any function g : ω → [0,∞) with
lim
n→∞

g(n) =∞. Then we define the upper density of weight g by

the formula

dg (A) = lim sup
n→∞

card(A ∩ n)

g(n)
for A ⊂ ω

Consider the following family

Zg := {A ⊂ ω : dg (A) = 0}.

Of course ω ∈ Zg ⇐⇒ n/g(n)→ 0. So, if we additionally assume
n/g(n) 9 0 then ω /∈ Zg , and we observe that Zg is an ideal on ω.
Note that Fin  Zg .
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Results

Proposition

If g : ω → [0,∞) is such that g(n)→∞ and n/g(n) 9 0, then
the ideal Zg is equal to Exh(ϕ) where

ϕ(A) = sup
n∈ω

card(A ∩ n)

g(n)
for A ⊂ ω,

and ϕ is a lower semicontinuos submeasure on ω. Consequently,
Zg is an Fσδ P-ideal on ω.

Definition

Let us denote set of all functions g : ω → [0,∞) satisfying
conditions g(n)→∞ and n/g(n) 9 0 by G .
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Results

Proposition

Let g1, g2 ∈ G be such that there exist M > 0 and k ∈ ω such that
g1(n)/g2(n) ≤ M for all n ≥ k . Then Zg1 ⊂ Zg2 . Consequently, if
there exist 0 < m < M and k ∈ ω such that
m ≤ g1(n)/g2(n) ≤ M for all n ≥ k , then Zg1 = Zg2 .

Proposition

For each function f ∈ G there exists a nondecreasing function
g ∈ G such that Zg = Zf .
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Results

Lemma

Let f ∈ G be such that n/f (n)→∞. Then there exists a set
A ⊂ ω such that the sequence (card(A ∩ n)/f (n)) is bounded but
not convergent to 0.

Theorem

If g1, g2 ∈ G are such that n/g2(n)→∞, g2(n)/g1(n)→∞ then
Zg1  Zg2 . If g ∈ G and n/g(n)→∞ then Zg  Z.
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Examples

There exists a function g ∈ G such that Zg  Z and Zg is
different from any ideal generated by a function of the form nα

with 0 < α < 1.

There exists a function g ∈ G such that Z  Zg

There exists a function g ∈ G such that Z and Zg are
incomparable with respect to inclusion.

Theorem

There exists a family G0 ⊂ G of cardinality c such that Zf is
incomparable with Z for every f ∈ G , and Zf and Zg are
incomparable for any distinct f , g ∈ G0.
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Thank you for your attention!
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P. Kostyrko, T. Šalat, W. Wilczyński, J-convergence, Real Anal.
Exchange 26 (2000/01), 669-685.
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