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Notation

Let T = R/Z be the circle group.

Let ‖x‖ denote the distance of x ∈ T to the zero element.

A subgroup G of the unit circle T is characterized by a pointwise
convergence of characters if there exists an increasing sequence of
integers {an}n∈N such that G = {x ∈ T : limn→∞ ‖anx‖ = 0}.

Problem
For which sequences {nk}k∈N is the group G uncountable?

Peter Eliaš The cardinality of subgroups characterized by convergence



Notation

Let T = R/Z be the circle group.

Let ‖x‖ denote the distance of x ∈ T to the zero element.

A subgroup G of the unit circle T is characterized by a pointwise
convergence of characters if there exists an increasing sequence of
integers {an}n∈N such that G = {x ∈ T : limn→∞ ‖anx‖ = 0}.

Problem
For which sequences {nk}k∈N is the group G uncountable?

Peter Eliaš The cardinality of subgroups characterized by convergence



Observation

For a = {an}n∈N, an increasing sequence of positive integers,
denote A(a) = {x ∈ T : limn→∞ ‖anx‖ = 0}.

A(a) is a proper Π0
3 subgroup of T.

(Closed) subsets of these groups are called Arbault sets.

Theorem (Folklore)

1. If lim
n→∞

an
an+1

= 0 then A(a) is uncountable.

2. If lim inf
n→∞

an
an+1

> 0 then A(a) is countable.
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Expressing integers as combinations of integers

Let a = {an}n∈N, z = {zn}n∈N be sequences of integers, m ∈ Z.
z is called an expansion of m by a if m =

∑
n∈N znan.

It is called a good expansion if, for every n,

∣∣∣∣∣∑
j<n

zjaj

∣∣∣∣∣ ≤ an
2

.

Lemma
If a = {an}n∈N is increasing, a0 = 1 and m ∈ Z, then there exists
a good expansion of m by a.
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Inclusions between Arbault sets

Let a = {an}n∈N and b = {bk}k∈N be increasing sequences of
positive integers, a(0) = 1, and lim

n→∞

an
an+1

= 0.

For every k ∈ N, let {zk,n}n∈N be a good expansion of bk by a.

Theorem
A(a) ⊆ A(b) holds true if and only if

1. ∀n ∃K ∀k ≥ K zk,n = 0,

2. ∃M ∀k
∑

n |zk,n| ≤M .

Problem. Is assumption lim
n→∞

an
an+1

= 0 necessary?
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Inclusions between Arbault sets

Theorem
A(a) ⊆ A(b) holds true if and only if

1. ∀n ∃K ∀k ≥ K zk,n = 0,

2. ∃M ∀k
∑

n |zk,n| ≤M .

Easy part: If 1. and 2. hold true then A(a) ⊆ A(b).

Uneasy part: If 2. does not hold then either

A. {|zk,n| : k, n ∈ N} is unbounded, or

B. {{n : zk,n 6= 0}| : k ∈ N} is unbounded.

If 2. holds true and 1. does not hold then

C. there is n and an infinite set J such that for every k ∈ J ,
zk,n 6= 0 and {m > n : zk,m 6= 0} is finite.

In each case we find x ∈ A(a) \A(b).
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A sufficient condition

Corollary

Let b = {bk}k∈N be an increasing sequence of positive integers.
If there exist sequences {an}n∈N and {zk,n}k,n∈N such that

1. lim
n→∞

an
an+1

= 0,

2. ∀n ∃K ∀k ≥ K zk,n = 0,

3. ∃M ∀k
∑

n |zk,n| ≤M ,

4. ∀k bk =
∑

n zk,nan,

then A(b) is uncountable.

Questions. Which sequences b have this property?
Is this condition necessary?
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Answer to the second question

Let {ck}k∈N, {mk}k∈N be sequences of positive integers such that

{mk}k∈N is unbounded and lists each value infinitely many
times, and

lim
k→∞

mkck
ck+1

= 0.

Let b2k = ck, b2k+1 = mkck.

Lemma
1. b = {bk}k∈N does not satisfy assumptions of the corollary.
2. A(b) is uncountable.

In fact, A(b) does not contain any subgroup of the form A(a)

where a = {an}n∈N satisfies lim
n→∞

an
an+1

= 0.

It does contain uncountable set {x ∈ T : ∀k ‖ckx‖ ≤ ck/ck+1}.
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Dirichlet groups

For a = {an}n∈N an increasing sequence of positive integers, and
ε = {εn}n∈N a sequence of positive reals, denote
D(a, ε) = {x ∈ T : ∀n ‖anx‖ ≤ εn}.

If lim
n→∞

εn = 0 then the group generated by D(a, ε) is a proper Σ0
2

subgroup of T.

Groups of this form are called Dirichlet groups, subsets of D(a, ε)
are Dirichlet sets.

Lemma

1. If for every n, εn ≥
an
an+1

, then D(a, ε) is uncountable.

2. If for every n, εn ≤
an

2an+1
, then D(a, ε) is countable.
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Inclusions between Dirichlet and Arbault sets

Let a = {an}n∈N and b = {bk}k∈N be increasing sequences of
positive integers, a(0) = 1, and lim

n→∞

an
an+1

= 0.

For every k ∈ N, let {zk,n}n∈N be a good expansion of bk by a.

Theorem
1. ⇒ 2.
1. D(a, ε) ⊆ A(b), where ε = {an/an+1}n∈N (hence, D(a, ε) is
uncountable).

2. ∀n ∃K ∀k ≥ K zk,n = 0.
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