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Abstract

Various systems of [0,1]-valued functions model generalized
random events and generalized probability measures. A problem
related to the extension of generalized probability measures (the
existence of certain epireflection) given in

J. Havlitkova: Real functions and the extension of generalized
probability measures. Tatra Mt. Math. Publ. 55 (2013),85-94.

has been recently solved by R. Fri¢. We show that the solution
leads to a better understanding of IF-probability (developed by B.
Rietan) and its relationship to fuzzy probability.
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Preliminaries

Denote / the closed unit interval [0,1]. Let X be a set. Then fuzzy
subsets on X are maps of X into /. We identify a subset A C X
and its indicator function x4 (where xa(x) =1 for x € A and
XA(x) = 0 otherwise). If A is a o-algebra of subsets of X, then
M(A) will denote the A-measurable fuzzy subsets of X.

Recall that

ID-poset ... a system X C [X of fuzzy subsets of X carrying a
D-poset structure: X is partially ordered (coordinatewise order),
Ox,1x e X, ifuy,veXand v<u, thenu—veX; Xiscalled a
D-poset of fuzzy sets

ID ... the category of ID-posets and sequentially continuous (with
respect to the coordinatewise convergence of sequences) maps
preserving the D-poset structure
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BID and CGBID

bold algebra ... a system X C IX of fuzzy subsets of X such that
Ox,1x € X and X is closed with respect to the tukasiewicz
operations @, ®, “complement”: if u,v € X, then

(u @ v)(x) = min{u(x) + v(x), 1},

(u® v)(x) = max{u(x) + v(x) — 1,0},

u(x) =1—u(x),xe X

Bold algebras generalize Boolean algebras.

BID ... the category of bold algebras as objects and sequentially
continuous D-homomorphisms as morphisms

CGBID ... the full subcategory of BID, the objects are bold
algebras of the form M(A); if X is a one-point set {a}, then A is
a trivial o-algebra T = {0, {a}} and M(T) = /{a} =0, 1]
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Let A be a o-algebra of subsets of X and let p be a probability
measure on A. For f € M(A) put h(f) = [ f dp and denote h the
resulting map. Recall that

(i) his a morphism (i.e. a sequentially continuous map preserving
the D-poset structure).

(ii) If h: M(A) — [0,1] is a morphism, then there is a unique
probability measure p on A such that h(f) = [ fdp, f € M(A).

fuzzy probability ... fuzzy random events are of the form M(A)
and fuzzy probability measures are integrals
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From BID to CGBID

Let Xy C /X be a bold algebra and let X' be the smallest
sequentially closed subset of /X containing Xy (X is a bold
algebra). Then there is a unique o-algebra Ay of subsets of X
such that Ay C X C M(Axy). If, moreover, X' contains all
constant functions cx, ¢ € [0,1], then X = M(Ay).

Recently has been proved that CGBIG is an epireflective
subcategory of BID (M(Ay) is the epireflection of Xp).

R. Fri¢: On D-posets of fuzzy sets. Math.Slovaca 64 (2014),
545-554.

This solves a problem posed in

J. Havlitkova: Real functions and the extension of generalized
probability measures. Tatra Mt. Math. Publ. 55 (2013),85-94.
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IF probability

IF set ... a pair (u,v), where u, v are fuzzy subsets of X such that
u(x) + v(x) <1forall x e X

IF sets have been intrudoced by K. T. Atanassov as a
generalization of fuzzy sets. Probability on /F events has been
developed by B. Rietan. IF events (suitable pairs of fuzzy sets)
can be modeled via powers of a bold algebra. Basic notions of the
IF probability have been outlined in the preceding talk.
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Let X C /X and Y C I be D-posets of fuzzy sets, i.e., objects of
ID. Let Z C IZ be their product in ID. Then Z consists of all
pairs (u,v),u € X,v € Y, where the ID-structure (partial order,
difference, convergence) is defined coordinatewise, and Z is the
disjoint union of X and Y (their coproduct in the category of sets
and maps). Each w = (u, v) can be visualized as a function on Z,
where u and v are “disjoinly glued” to form w.

If V is a bold algebra, then ) x )Y denotes the corresponding
power bold algebra.
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Powers

Let Xy € IX be a bold algebra, let X C IX be the the smallest
sequentially closed bold algebra containing Xy, and let Ay be the
unique o-algebra of subsets of X such that Ay C X C M(Ay).
Pairs (u,v) € M(Ax) x M(Ay) are fuzzy random events “related
to” IF random events. The power bold algebra M(Ax) x M(Ay)
carries the usual coordinatevise tukasiewicz operations: ¢, ® and
complementation. Denote

A(Xo X Xo) = {(u, V) € Ay x Ap; u < V}
and
A(M(AX) X M(Ax)) = {(U, V) S M(Ax) X M(AX), u< V}.

Clearly, both A(Xp x Ap) and A(M(Ax) x M(Ay)) are closed
with respect to the tukasiewicz operations @ and ®, but are not
closed with respect to the complementation.
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Complementation

THEOREM 1. Let Xy C /X be a bold algebra. Then Ay x Ay is
the smallest bold algebra containing A(Xp x Ap).

Proof. Assume that (u,v) € Xy x Xp. Then (u,1x) € A(Xp x Ap)
and (Ox,1x —v) € A(Xp x Ap). Since (1x,v) is the complement
of (Ox,1x —v) and (u,v) = (u,1x) A (1x,v), (u,v) belongs to

each bold algebra containing A(Xp x Xp) and the assertion follows.

Observe that Theorem 1 yields a one-to-one correspondence
between objects of the form A(Xp x Ap) and the bold algebras of
the form Xy x Xy and M(Ax) x M(Ax), respectively.
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PROBLEM. Consider a category A, the objects of which are of the
form A(AXp x Xp), and the category category B, the objects of
which are of the form Xy x Xy. Having in mind relationships
between the /F probability and the fuzzy probability, is it possible
to define morphisms of A and B in a nontrivial way so that A and
B are isomorphic?

Let Xy C IX, Yo C 1Y be bold algebras and let h be a sequentially
continuous D-homomorphismm on AXj into ). For

(u,v) € A(Xy x Xp) define h(u,v) = (h(u), h(v)). It is easy to see
that h(u,v) € A(Jo x o). Denote h the resulting map on

A(Xo X Xo) into A(yo X yo)
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LEMMA 2. (i) h preserves the order and the tukasiewicz
ope@tions: ®, .
(ii) h is sequentially continuous.

Denote A the category having systems A(Xp x Ap) as objects and
maps h as morphisms. Further denote BID? the category having
systems Xy x Xp as objects and maps of the type h as morphisms.

THEOREM 3. The categories A and BID? are isomorphic.

Moreover, as stated on the previous talk, states on

AM(Ax) x M(Ay)) and sequentially continuous
D-homomorphisms on M(Ay) x M(Ay) into | (states in the
Fuzzy Probability Theory) are in one-to-one correspondence.
Consequently, the IF-probability can be studied within FPT.
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The category of products

In order to prove additional properties of powers of bold algebras,
we embed BID? into the following category BID, of products:

(i) The objects are ordered pairs (X,)), where X C [0,1]X and
Y C [0,1]Y are bold algebras and the operations are defined
coordinatewise;

(i) The morphisms are ordered pairs (f, g) of sequentially
continuous D-homomorphisms and the composition is parallel:

(f2,82) o (f1,81) = (f20 fi,82 0 81)

whenever the compositions f, o f; and g» o g1 are defined.
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Epireflection

THEOREM 4. Let Xy € /X and )y € 1Y be bold algebras. Let

X C 1%, resp. Y C 1Y, be the smallest sequentially closed bold

algebra containing Ay, resp. Mo. Then M(Ax) x M(Ay) is the
epireflection of Xy x ) into the subcategory CGBID of BID.

Hint of proof.

(i) Let h be a sequentially continuous D-homomorphisms on
Xo x Yo into M(A). We have to prove that h can be
uniquely extended to a sequentially continuous
D-homomorphisms on M(Ax) x M(Ay) into M(A);

(i) Let Z be the disjoint union of X and Y and let Z5 C /€ be
the corresponding “disjoint union” of Xy and ). Then we
can identify M(Az) and M(Ay) x M(Ay).

(i) Finally, (i) follows from the fact that M(Az) is the
epireflection of Ay x )V into CGBID.
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Generalized probability theories within FPT:

COROLLARY 5. The epireflector sending objects of BID into
CGBID is productive.

COROLLARY 6. Let Xy C /X be a bold algebra and let h be a
sequentially continuous D-homomorphismm on Ay into /. Then h
can be uniquely extended to a sequentially continuous
D-homomorphisms on M(Ayx) x M(Ay) into /.

This and the next theorem leads to two generalized probability
theories which can be studied within FPT: one besed on BID? and
the other based on BID:.
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Let Xy € /X and )y € 1Y be bold algebras. Let g, h be
sequentially continuous D-homomorphisms on Xp, resp. on ),
into / =[0,1] and let a € [0,1]. For (u,v) € Xy x Yo put

(ag + (L —a)h)((u,v)) = ag(u) + (1 — a)h(v) and denote

ag + (1 — a)h the resulting map. It will be called a convex
combination of g and h. The proof of the next lemma is
straightforward and it is omitted.

LEMMA 7. ag + (1 — a)h is a sequentially continuous
D-homomorphism.

THEOREM 8. Let Xy C /X and Yy € /Y be bold algebras. Then
the sequentially continuous D-homomorphisms on Ay x ) into /
are exactly the convex combinations of two sequentially continuous
D-homomorphisms on A}, resp. on ), into /.
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