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Introduction

Definition

Set E(x)
Suppose that x = (x(0),x(1),x(2),...) and x € l; \ co then

E(x)= {Zenx(n) ten € {0,1}}
n=0

o0
is the set of all subsums of the series Y x (n), called the achievement set
n=0
of x.
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|. E(x) is a compact perfect set.
I If [x(n)| > > i<, |x(7)] for n sufficiently large, then E(x) is
homeomorphic to the Cantor set C.
L1 |x(n)| < Xojsp [x()] for n sufficiently large, then E(x) is a finite
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The following properties of sets E(x) were described in
1914 by S. Kakeya:

|. E(x) is a compact perfect set.
I If [x(n)| > > i<, |x(7)] for n sufficiently large, then E(x) is
homeomorphic to the Cantor set C.
L1 |x(n)| < Xojsp [x()] for n sufficiently large, then E(x) is a finite
union of closed intervals. Moreover, if |x(n)| > |x(n+ 1)| for almost
all n, and E(x) is a finite union of closed intervals, then

Ix(n)| < Xjp [x(i)] for n sufficiently large.

The hypothesis
For any x € I1 \ cpo, the set E(x) is either homeomorphic to C or it is a
finite union of closed intervals )
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(Z) a finite union of closed intervals;
(C) homeomorphic to the Cantor set;

(MC) homeomorphic to the set E(c)

_Topological and measure properties of some s 5/22




Introduction

Theorem Guthrie-Nymann

Theorem

For any x € I \ coo, the set E(x) is one of the following types:
(Z) a finite union of closed intervals;
(C) homeomorphic to the Cantor set;

(MC) homeomorphic to the set E(c) (of subsums of the sequence

CHE NI NN)}
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@ Some algebraic and topological properties of these sets have been
recently considered in - [B,B,G,S] J

@ The structure of the achievement sets E(x) for multigeometric
sequences x was studied in - [B,F,S]

where by multigeometric sequence we understand a sequence of the form
(k07 kl) KRN kITH k0q7 qu, ey kmq7 k0q27 k1q27 cey kmq27 k0q3 v )

for some positive numbers ko, ..., kyn and g € (0,1)
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Introduction

h=coUCUZUMC J

@ Some algebraic and topological properties of these sets have been
recently considered in - [B,B,G,S] J

@ The structure of the achievement sets E(x) for multigeometric
sequences x was studied in - [B,F,S]

where by multigeometric sequence we understand a sequence of the form
(k07 kl) KRN kITH k0q7 qu, ey kmq7 k0q27 k1q27 cey kmq27 k0q3 v )
for some positive numbers ko, ..., kyn and g € (0,1)

(kOa k17 cee km; q)
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Set K(Z; q)

The achievement sets of multigeometric sequences are particular cases of
self-similar sets of the form

{Zanq annoezw}

where ¥ C R and g € (0,1).
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The achievement sets of multigeometric sequences are particular cases of
self-similar sets of the form

{Zanq annoezw}

where ¥ C R and g € (0,1).

v

The set K(X; q) is self-similar in the sense that K(¥;q) = X+ q- K(X; q)J
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Set K(X; q)

The achievement sets of multigeometric sequences are particular cases of
self-similar sets of the form

{Zanq annoezw}

where ¥ C R and g € (0,1).

v

The set K(X; q) is self-similar in the sense that K(¥;q) = X+ q- K(X; q)J

Moreover, the set K(X; g) can be found as a unique compact solution
K C R of the equation K = ¥ + gK.
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Set K(Z; q)

It is easy to see that for a multigeometric sequence xq = (ko, . .., km; q)
the achievement set E(x) coincides with the self-similar set K(X; q) for

the set

{Z knen  (en)ig € {0,131}

of all possible sums of the numbers kg, ..., kn.
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Definitions

For a compact A C R let us denote:
o diam A =sup{|la—b|:a,be A}
e 0(A)=inf{la—b|:a,be A, a+# b}
o A(A)=sup{la—b|:a,be A, (a,b)NA=0}

A(A
° I(A) = A(A)—&-(di)amA
o i(A)=inf{I(B): BC A, 2<|B| <w}
in particular for finite set ¥ = {o1,...,0s} (where 01 < --- < 05) we have

diam(X) =05 — 01
6(X) = min(ojs1 — o)
1<s

A(X) = max(oiy1 — 0i)
1<s
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The main result

Theorem

Theorem

Let Y = {o1,...,0s} for some real numbers o1 < --- < 0s. The

self-similar sets K(X; q) where q € (0,1) have the following properties:

_Topological and measure properties of some s 10 / 22



The main result

Theorem

Theorem

Let Y = {o1,...,0s} for some real numbers o1 < --- < 0s. The

self-similar sets K(X; q) where q € (0,1) have the following properties:
Q KI(X; q) is an interval if and only if g > I(X);

_Topological and measure properties of some s 10 / 22



The main result

Theorem

Theorem

Let Y = {o1,...,0s} for some real numbers o1 < --- < 0s. The

self-similar sets K(X; q) where q € (0,1) have the following properties:
Q KI(X; q) is an interval if and only if g > I(X);

@ K(X;q) is not a finite union of intervals if ¢ < I(X) and
A(Z) € {02 —01,0s — Jsfl}f
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The main result

Theorem

Theorem

Let Y = {o1,...,0s} for some real numbers o1 < --- < 0s. The

self-similar sets K(X; q) where q € (0,1) have the following properties:
0 K(X; q) is an interval if and only if ¢ > I1(X);

K(X; q) is not a finite union of intervals if ¢ < I(X) and
( )6{02_01705 Os— 1}
K(

Y; q) contains an interval if ¢ > i(X);
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Theorem

Theorem

Let Y = {o1,...,0s} for some real numbers o1 < --- < 0s. The
self-similar sets K(X; q) where q € (0,1) have the following properties:

Q KI(X; q) is an interval if and only if g > I(X);

@ K(X;q) is not a finite union of intervals if ¢ < I(X) and
A(X) € {op — 01,05 —0s-1};
@ K(X; q) contains an interval ifq > i(X);

(%) 1 Vd
Q Ifd= Tam (%) < 37273 and IZ\ < v then for almost all

(IZ\ 1-\9) the set K(X; q) has positive Lebesgue measure and
the set K(X;/q) contains an interval;
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The main result

Theorem

Q@ K(X; q) is a Cantor set of zero Lebesgue measure if g < ﬁ or, more

generally, if q” < \T1| for some n € N where
Y= {Xizpakq" : (ak)i—g € T}
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The main result

Theorem

Q@ K(X; q) is a Cantor set of zero Lebesgue measure if g < ﬁ or, more

generally, if q” < \T1| for some n € N where

o= {CiZoaq" : (ak)isp € T}

Q@ IfX>{a,a+1,b+1,c+1,b+|X|,c+|X|} for some real numbers
a, b, c € R with b # ¢, then there is a strictly decreasing sequence
(gn)new with lim,_o0 gn = ﬁ such that the sets K(X; g,) has
Lebesgue mesure zero.
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Self-similar sets of zero Lebesgue measure

Theorem

If there exists n € N such that
n—1 )
‘ Z q’):‘ q" <1
i=0

then the set K(X, g) has measure zero.

12 /22



Proof

K:=K(X,q)
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Proof

K:=K(X,q)
K=X+gK
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Self-similar sets of zero Lebesgue measure
Proof

K:=K(X,q)
K=X+gK

n—1
K=Y qdT+q¢K
i=0
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Self-similar sets of zero Lebesgue measure
Proof

K:=K(X,q)
K=X+gK
n—1 )
K=Y qT+qK
i=0
Y, = 27;01 in
1Xal-q" <1
MK) >0
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Self-similar sets of zero Lebesgue measure
Proof

K:=K(X,q)
K=X+gK
n—1 )
K=Y qT+qK
i=0
zn = 7;()1 in
1Xal-q" <1
MK) >0

AK) < |Zal - g™ A(K) < 1+ X(K)

AK) =0
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Self-similar sets of zero Lebesgue measure

Lemma

For any integer numbers s > 1 and n > 1 the unique positive solution g of
the equation

1
— 1
P (1)

is greater then % Moreover, there is ng € N such that for any n > ng

X+ x4 .. +x" =

(s” - 2”_1) -q" < 1. (2)

_Topological and measure properties of some s 14 / 22



Proof

_Topological and measure properties of some s 15 / 22



Self-similar sets of zero Lebesgue measure
Proof

_Topological and measure properties of some s 15 / 22



Self-similar sets of zero Lebesgue measure
Proof

_Topological and measure properties of some s 15 / 22



Self-similar sets of zero Lebesgue measure
Proof

_Topological and measure properties of some s 15 / 22



Self-similar sets of zero Lebesgue measure

Proof

1
q> -
s
1 21y 1
s — :§<s) (s —1)sn—2
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Self-similar sets of zero Lebesgue measure
Proof

1
q>-
s

1 _”f(l)" 1

s — ~ \s (s—1)sn2
1 = 1 2y 1
n—1 __ o i o -
T T Zlq s—1 ;<s> (s —1)sn—2
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Self-similar sets of zero Lebesgue measure

Proof
S -t ()< 2
—~ \s Cs—1 sn—1 s—1
1
q> -
s
1 _”f(l)" 1
s—1 —\s (s—1)sn2
1 = 1 21y 1
n—1 __ o i o
T T Zlq s—1 ;<s> (s —1)sn—2
1 9—q"
s—1 1—gq
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Self-similar sets of zero Lebesgue measure

1

1—q7q(1_qn*1)>q l—m

s—1
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Self-similar sets of zero Lebesgue measure

1-gq 1 ( 1 )
T =g(1-4qg" 1— ——M— ).
s—1 q( q9 )>q (s —1)sn—2

q

1—q>(s—1)q—sn_2
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Self-similar sets of zero Lebesgue measure

1-gq 1 ( 1 )
T =g(1-4qg" 1— ——M— ).
s—1 q( q9 )>q (s —1)sn—2

q
5n—2

l1-g>(s—1)qg—

q
Sq—ﬁ<1
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Self-similar sets of zero Lebesgue measure

1-gq 1 ( 1 )
T =g(1-4qg" 1— ——M— ).
s—1 q( q9 )>q (s —1)sn—2

q
5n—2

l1-g>(s—1)qg—

s”-(l—s,,%l).
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Self-similar sets of zero Lebesgue measure

Sn.<1_2n:1)
" —on-1 'qn < S
(-2 |

Snfl
2n—1
>n
S
2n-1 n
sn Sn—l
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Self-similar sets of zero Lebesgue measure

Theorem

If a finite subset ¥ C R contains the set

{a,a+1,b+1,c+1,b+ |X|,c+ |X|} for some real numbers a, b, c with
b # c, then there is a decreasing sequence (g,)5; tending to ‘%' such

that, for any n € N, the self-similar set K(X, g,) has Lebesgue measure
zero.
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Proof

Proof
Let s = |X|
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Self-similar sets of zero Lebesgue measure

Proof

Proof

Let s = |X| and for every n denote by g, the unique positive solution of
the equation (1) from Lemma.
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Proof

Proof

Let s = |X| and for every n denote by g, the unique positive solution of
the equation (1) from Lemma. Let ny be a natural number such that

(s" - 2”_1> (gn)" <1

for any n > ny.
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Self-similar sets of zero Lebesgue measure
Proof

Proof

Let s = |X| and for every n denote by g, the unique positive solution of
the equation (1) from Lemma. Let ny be a natural number such that

(s" - 2”_1> (gn)" <1

for any n > ng. Clearly (g,)5%,, is a decreasing sequence and

H _ 1
limp oo gn = 5

_Topological and measure properties of some s 19 / 22



Self-similar sets of zero Lebesgue measure
Proof

Proof

Let s = |X| and for every n denote by g, the unique positive solution of
the equation (1) from Lemma. Let ny be a natural number such that

(Sn _ 2n—1> X (qn)n < 1
for any n > ng. Clearly (g,)5%,, is a decreasing sequence and

liMmp—oo Gn = % It suffices to show that K(X, g) has measure zero for
n > no.
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Self-similar sets of zero Lebesgue measure
Proof

Taking into account that each g, is a solution of (1),
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Self-similar sets of zero Lebesgue measure
Proof

Taking into account that each g, is a solution of (1), we conclude that

n—1 n—1
a+ > (s—1+e)(gn) =(a+1)+ > ei(gn)
i=1 i=1

foranye;e {b+1,c+1} C L.
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Self-similar sets of zero Lebesgue measure
Proof

Taking into account that each g, is a solution of (1), we conclude that

n—1 n—1
a+ > (s—1+e)(gn) =(a+1)+ > ei(gn)
i=1 i=1

forany e; € {b+1,c+ 1} C X. Therefore

n—1

> (gn)' =

i=1

<s" -2t
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Self-similar sets of zero Lebesgue measure
Proof

Taking into account that each g, is a solution of (1), we conclude that

n—1 n—1
a+ > (s—1+e)(gn) =(a+1)+ > ei(gn)
i=1 i=1

forany e; € {b+1,c+ 1} C X. Therefore

n—1
Z (qn)l s < sn _ 2n—1.
i=1

Hence, by Lemma,
n—1
Z (qn)' Z’ (qn)" < 1.
i=1
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Self-similar sets of zero Lebesgue measure
Proof

Taking into account that each g, is a solution of (1), we conclude that

n—1 n—1
a+ > (s—1+e)(gn) =(a+1)+ > ei(gn)
i=1 i=1

forany e; € {b+1,c+ 1} C X. Therefore

n—1

> (gn)' =

i=1

< s -2 1

Hence, by Lemma,
n—1

Z (qn)i Z’ (qn)" < 1.

i=1

and we can apply Theorem to conclude that K(X, q) has Lebesgue
measure zero.

_Topological and measure properties of some s 20 / 22



m—times
T
For sequence x = (3,2,...,2; q) we know, that

L o o o ]

r hd 1
1 1 2

0 2m+2 2m 2m+5 1
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m—times
T
For sequence x = (3,2,...,2; q) we know, that
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} - . . {
1 1 2
0 2m+2 2m 2m+5 1
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m—times
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For sequence x = (3,2,...,2; q) we know, that

Co A
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1 1 2
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Self-similar sets of zero Lebesgue measure
m—times
———

For sequence x = (3,2,...,2; q) we know, that

Co MC MC
1 1 2
0 2m+2 2m 2m+5
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