

Jan Kwiecinski 1938 - 2003

...absolutely the kindest man I have ever met in my whole life. CERN Courier, Jan-Feb 2004 Some of Jan's proteges:

Krzysztof Golec-Biernat Leszek Motyka Anna Stasto

Michal Praszalowicz

excellent joint paper on saturation in BFKL

BKP eq. for the odderon

QCD	Electroweak
SU(3) X	SU(2) X U(1)
expt. led	theory led (~30 yrs)
g, q, confined, never observed	l, 8, W, Z seen in detectors

Problem is low energy QCD

3 examples from W/S

Pentaquarks

Several expts see an exotic B=1, S=1 baryon resonance in K⁺n or K⁰p channel $\Theta_s(1530)$ with narrow width Γ <10 MeV

mass and width measurements of Θ^+

World average: $m=1530.5\pm2.0$ MeV

but H1 see Θ_{c}

which is not seen by ZEUS?

The chiral soliton (Skyrme) model (χ SM) predicted Θ_s (1530) with Γ <15 MeV, J^P=(1/2)⁺ in a 10 of SU(3)_f Praszalowicz(1987), Diakonov,Petrov,Polyakov(1997)

 χ SM & CQM are complementary: ~shell & droplet nuclear models

Postdictive interpretation in terms of constit.quark model (CQM) $\Theta_s = uudds$ in P-wave (1/2)⁺ in 10 Karliner & Lipkin (ud) (uds) predict Θ_c (2985 +/- 50 MeV)) Jaffe & Wilczek (ud) (ud) \overline{s} predict $\Theta_c(2710 \text{ MeV})$ H1 see Θ_{c} (3099 MeV) Anticipate $\Gamma(\Theta_c) \sim 10\Gamma(\Theta_s)$ from KN to DN phase space $\Theta_{\rm s}(1530)$ uudds Karliner & Lipkin expect ~m_s/3 $M(\Xi) - M(\Theta_s) < 300 MeV,$ N* uuddd, uudss whereas expt ~330MeV Σ uussd Π Ξ--(1860

Third example of expt. led QCD:

Wu-Ki Tung's "trip down memory lane"

He showed us some the twists & turns of the PDF input needed to keep pace with the new experimental measurements

DIS → Bjorken scaling → quarks (of spectroscopy) really exist

→ Gross & Wilczek, Politzer →
 colour SU(3) gauge theory (QCD)
 → logarithmic scaling violations

A famous experimentalist to Wilczek:

You expect us to measure logarithms ! Not in your lifetime young man !

Fixed target DIS ep, ed, vN; D-Yan, W asym, Tevatron jets HERA ep \rightarrow global DGLAP parton analyses CTEQ, MRST \rightarrow analyses to selected data sets Botje, Alekhin, ZEUS, H1...

Expect small x processes to be driven by the gluon.

Surprise \rightarrow at v.low scales appear to be dominated by by singlet sea quarks \rightarrow valence-like or -ve gluon !

Sea quarks & gluons not (perturbatively) connected.

α_{s} from DIS

	$\Delta \chi^2$	$lpha_S(M_Z^2) \ \pm { m expt} \pm { m theory} \pm { m model}$
NLO		
CTEQ6	100	0.1165 ± 0.0065
ZEUS	50	$0.1166 \pm 0.0049 \qquad \qquad \pm 0.0018$
MRST03	5	$0.1165 \pm 0.002 \ \pm 0.003$
H1	1	$0.115\ \pm 0.0017 \pm 0.005 \substack{+0.0009 \\ -0.0005}$
Alekhin	1	$0.1171 \pm 0.0015 \pm 0.0033$
NNLO		
MRST03	5	$0.1153 \pm 0.002 \pm 0.003$
Alekhin	1	$0.1143 \pm 0.0014 \pm 0.0009$

Remarkably consistent, considering v.different selection of data fitted – but then all include the crucial BCDMS data

DIS 1993

Now

(Lum=20 nb⁻¹)

HERA has opened up the small x domain

- how large is the DGLAP domain ?
- are BFKL (log 1/x) effects evident ?
- is there any evidence of absorptive corrections, or even parton saturation ?
- HERA observes diffractive DIS (at ~10% of DIS).
 What role does it play ?
- what would we like HERA to measure now ?

Parton uncertainties due to stat/sym errors of data fitted

Other uncertainties include

selection of data fitted; choice of x,Q²,W² cuts

Theoretical uncertainties

higher-order DGLAP NLO, NNLO...Moch,Vermaseren,Vogt $\alpha_s \ln(1/x)$ and $\alpha_s \ln(1-x)$ effects $\star \star \star \star \star$ absorptive corrections from parton recombination residual higher-twist effects QED effects

Uncertainties due to input assumptions

isospin-violating effects MRST s not equal to s CTEQ → no NuTeV sin²θ anomaly heavy-target corrections choice of input parametrization Thorne, Tung MRST find tension between data sets --- F_2 data (x~0.01) and Tevatron jets (x~0.07-0.5) both prefer more gluon

Experimental ways to determine the gluon

- F_L most direct x ~ 10⁻⁴ 10⁻³
- Prompt photon data (WA70,E706) and theory problems
- Tevatron jets $x \sim 0.07 0.5$
- HERA jets x ~ 0.01 0.1 Cooper-Sarkar, Butterworth (ZEUS)
- Diffractive J/ψ
 at HERA g² x ~ 10⁻³
 need to improve theory
 first attempt by Szymanowski

(+ momentum sum rule)

Simulation of low x FL measurement at HERA based on low Ep Runs

Lower HERA beam energies could also provide a valuable check on the large x data, which rely on BCDMS. Also ed?

Salam

- Rapid rise in P_{gg} is not for today's energies!
- ullet Main feature is a *dip at* $x\sim 10^{-3}$

Questions:

 Various 'dips' have been seen Thorne '99, '01 (running α_s, NLLx) ABF '99–'03 (fits, running α_s) CCSS '01,'03 (running α_s, NLL_B)

Is it always the same dip?

- Is the dip a rigorous prediction?
- What is its origin?
 Running α_s, momentum sum rule...?

NNLO DGLAP gives a clue...

 $-1.54\,\bar{\alpha}_{s}^{3}\ln\frac{1}{x}$

Include charm.

Relate to xg & evolve in Q² +Bartels,Kowalski

Is it saturation or confinement ?

There are other dipole fits without saturation e.g. Forshaw, Kerley & Shaw.

Saturation

No definitive experimental evidence

Much theoretical activity and progress-----BK, JIMWLK, KPP...equations

A glimpse for pedestrians (with help from Icanu, Golec-Biernat)

Complementary approaches

p rest frame / fast dipole

Balitsky Kovchegov eq.

Munier & Peschanski:

The BK eq. is approximated by the Kozmogorov,Petrovski, Pisconov eq., which is well studied in condensed matter physics

fast p / slow dipole

hard $F_{2}(x,Q^{2}) = \sum_{a} \int dy f_{a}(y,Q^{2}) \stackrel{\text{partons}}{F_{2}} \frac{\text{mara}}{(x,Q^{2})} \frac{f_{a}(x,Q^{2})}{f_{a}(y,Q^{2})} \stackrel{\text{mara}}{F_{2}} \frac{(x,Q^{2})}{(x,Q^{2})}$ Same ctive DIS $F_2^{D(4)} \equiv \frac{dF_2(x,Q^2;x_{II},t)}{dx_{II}dt}$ = $\sum \left[d_{\mathbf{f}} d_{\mathbf{f}a}^{\mathbf{f}}(\mathbf{f}, \mathbf{Q}^{2}; \mathbf{x}_{\mathbf{I}}, t) \hat{\mathbf{f}}_{2}^{a} \right]$ drudt diffractive parton deusity Factorization proved for DDIS (Collins) Not true for diff. hadron-hadron collisions

fractive DIS QZZ $dF_2^{\mathcal{D}}(x,Q^2;x_{\mathrm{II}},t)$ $F_2^{D(4)}$ $df_a(y, Q^2; x_{I}, t) \hat{f}_2^a$ =[111 dr diffactive tab. gap parton density (1-xp)p Additional assumpt:": Regge fact? Ingelman, Schlein I ~ particle Q2 x/xp $F_2^{D(4)}$ $x = \beta$: $F_2^{\mathbb{R}}(\beta, Q^2)$ sect Reggeon $f_{\mathbb{P}}(x_{\mathbb{P}},t)$ = Comeron flox I eq pqp(p) + DGLAP evol?

QCD description of diffractive DIS proton rest frame 998 B spectrum determined by wave firs of & > qq and & > qq g Wüsthoff (Mueller, Nikolaev & Zakharov)

Bartels, Ellis, Kowalski & Wusthoff base parametrization on these forms

Contribution of diffractive F2 to (inclusive) F2 Apply AGK cutting rules to POP contribution to Fz (AGK in QCD: Bartels + Ryskin) diffractive cut one I cut both Is's cut (InT ~ 6 tot) = total -1 +2 $\Delta F_2^{abs. conr} \simeq -F_2^D$ negative (~ Glauber shadowing) In pQCD IP is a cut, not a pole Lipator I has continuous no. of compts. of different size to 1/4 For each compt. DGLAP evol? of F2(2,Q2,n2) starts from $\mu \rightarrow Q$ provided it is large enough

Simultaneous QCD analysis of DDIS and DIS data
(Pomeron size
$$r = {}^{4}\mu$$
) Martin, Ryskin, Watt
1. Fit to F_{2}^{D} data: $F_{2}^{D} = \int_{Q_{0}^{2}}^{Q_{0}^{2}} d\mu^{2} DGLAP(\mu \rightarrow Q) + \sum_{partons}^{need} {}^{q} dobal' partons + non-pert. contrib + F_{1}^{D} + secondary Regeon
($n < Q_{0}$)
2. Re-do 'global' fit to inclusive F_{2}
 F_{2} data = $F_{2}^{DGLAP} + \Delta F_{2}^{abs.corr}$
 $\begin{pmatrix} f \\ (-F_{2}^{D}) \\ negative. \end{pmatrix}$ ($n < Q_{0}$ part is already
in input to DGLAP evol.
negative.
more gluon?
3. Therate$

The perturbative contribution $(m > Q_o)$: $F_{2}^{\mathcal{D}(3)}(x_{\mathbb{H}},\beta,Q^{2}) = \int_{Q^{2}}^{Q^{2}} \frac{du^{2}}{\mu^{2}} f_{p}(x_{\mathbb{H}},\mu^{2}) F_{2}^{\mathcal{D}(2)}(\beta,Q^{2},\mu^{2})$ DGLAP evol givon by with input $\left[xq(x,n^2)\right]^2$ based on + 8→99,999 $\left[xq_{sea}(x,\mu^2)\right]^2$ wave frs. + couplings to at x=xp 88, 99

Simultaneous QCD analysis of DDIS and DIS data
(Pomeron size
$$r = {}^{4}\mu$$
) Martin, Ryskin, Watt
1. Fit to F_{2}^{D} data: $F_{2}^{D} = \int_{Q_{0}^{2}}^{Q_{0}^{2}} d\mu^{2} DGLAP(\mu \rightarrow Q) + \sum_{partons}^{need} {}^{q} dobal' partons + non-pert. contrib + F_{1}^{D} + secondary Regeon
($n < Q_{0}$)
2. Re-do 'global' fit to inclusive F_{2}
 F_{2} data = $F_{2}^{DGLAP} + \Delta F_{2}^{abs.corr}$
 $\begin{pmatrix} f \\ (-F_{2}^{D}) \\ negative. \end{pmatrix}$ ($n < Q_{0}$ part is already
in input to DGLAP evol.
negative.
more gluon?
3. Therate$

Diffractive photoproduction of dijets: direct compt. $S^2 \sim 1$ resolved compt. (hadron-like) $S^2 \sim 0.34$

NLO analysis by Klasen & Kramer,-good agreement with prelim. H1 data

> Note in LO analysis, data would prefer $S^2 \sim 1$ for resolved

Exclusive diffractive Higgs signal $pp \rightarrow p+H+p$

Health warning: Royon confirms KMR prediction for cross section, but notes present technology will yield smaller S/B

S² = **0.026**

Khoze, Martin, Ryskin

Advantages: 2 indep. M_H det. 1. missing mass to proton taggers ($\Delta M \sim 1$ GeV)

2. bb decay (Δ M~10 GeV)

bb backgd v.suppressed by $J_z=0$ selection rule

For a 120 GeV (SM) Higgs at the LHC (L=30 fb⁻¹) 11 events / 4 background For MSSM with $\tan\beta$ ~50, m_A~130 GeV 70 events / 3 background DIS continues to flourish – the W/S contains more results & research activity than those on any other topic

Much remains to be learnt – we are just getting to grips with many basic problems – data are not sufficient / absent !

It is inconceivable that HERA will not measure F_L with sufficient precision to determine the gluon – low energy runs must be done – they will also determine large x PDFs ESSENTIAL FOR THE LHC

bb in DIS & photoproduction, electron runs for CC & $xF_{3,}$ precision on F_2 (diffractive),...

There are so many crucial measurements still to be done, and unless the correct action is set into motion soon, time will run out for HERA (& DIS) while the physics potential of the machine is still coming to its prime.

A global analysis is required – can the eRHIC enthusiasts be persuaded to join in the push for a future HERA programme – scientifically it would seem to be a far better solution all round.

