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Higher orders versus MC’s

Good Bad Users

HO
Hard emissions

Total rates

Soft&coll emissions

Hadronization

No events

Theorists

MC
Soft&coll emissions

Hadronization

Outputs events

Hard emissions

Total rates
Experimentalists

In other words: HO
⋂

MC = ∅

A formalism incorporating HO and MC should combine their Good features, avoiding the

Bad ones. However, the radical differences between the two approaches made QCDists

wonder whether such a combination was possible



Motivations for matching HO and MC

A formalism with all the Good features is certainly desirable, and its definition is a

challenging theoretical problem. But, are there compelling physical motivations?

• It is not unlikely that new physics signals will emerge from counting experiments,

which require firm control on SM signal and background simulations

• The high-energy regime of the Tevatron and the LHC implies the relevance of

multi-jet, multi-scale processes, with large K-factors

• Standard MC’s don’t perform well in predicting multi-jet observables, and the

practice of multiplying the results by inclusive K-factors is just wrong. This may

lead to major errors in the strategies for searches (kind of new in HEP!)

• Multi-scale processes are badly predicted by fixed-order computations. Results

matching these computations with resummed ones are mandatory (a procedure

largely successful at LEP)

• The hadronization procedure in HO computations is extremely naive, and strictly

speaking can be applied only at very large pT ’s



A less ambitious goal

The problem is much simplified if one selects only those Feynman diagrams contributing

to HO, which correspond to the emissions of real particles

The improved MC is capable of simulating the emission of nE extra hard partons

Implicit is the notion of Born ≡ LO level, the process(es) with the smallest number nB of

final-state partons which contributes to a given reaction (usually nB = 2)

This procedure is called Matrix Element Correction

The strategy: generate the hard subprocesses with a standalone package (AcerMC,

ALPGEN, AMEGIC++, CompHEP, Grace, MadEvent), and use the resulting kinematics

as initital conditions for your favourite parton shower MC (HERWIG, PYTHIA)

• Practical problems: efficient ME generation for (nE + nB)-parton final states,

efficient phase-space sampling

• Principle problem: real ME’s diverge in the soft/collinear regions, and a cut δsep

must be introduced at the parton level to avoid divergences =⇒ physical

observables will depend on the unphysical δsep cutoff (a 20–30% effect at best)



Getting rid of δsep dependence

In the context of e+e− physics, Catani, Krauss, Kuhn & Webber show that the problem

cannot be solved at fixed nB . Extended to colour dipoles by Lönnblad; extended to

hadronic collisions by Krauss

• The problem: δsep dependence ⇔ double counting

PS-dominated ? ME-dominated

• The solution: separate the PS- and ME-dominated regions in an arbitrary manner; to

compensate for the arbitrariness, the shower must be modified accordingly

• The aim: compute the observable at O(αn−2
S

), for any n, and resum to NLL

accuracy (downstairs) where needed. By-product: the δsep dependence is reduced

σn ∼ αn−2
S

∑

k

akαk
S

log2k δsep −→ αn−2
S

(

δa
sep +

∑

k

bkαk
S

log2k−2 δsep

)



Adding virtual corrections: NLOwPS

The problem: virtual corrections pose additional difficulties

Born Virtual Real
The solution is unlikely to be unique, so start with some definitions

� Total rates are accurate to NLO

� Hard emissions are treated as in NLO computations

� Soft/collinear emissions are treated as in MC

� NLO results are recovered upon expansion of NLOwPS results in αS.

In other words: there is no double counting in NLOwPS

� The matching between hard- and soft/collinear-emission regions is smooth

� The output is a set of events, which are fully exclusive

� MC hadronization models are adopted

NLOnEwPS with nE 6= 1 is unfeasible with our present understanding



NLOwPS versus MEC

Why is the definition of NLOwPS’s much more difficult than MEC?

The problem is a fundamental one: KLN cancellation is achieved in standard MC’s

through unitarity, and embedded in Sudakovs. This is no longer possible: IR

singularities do appear in hard ME’s

IR singularities are avoided in MEC by cutting them off with δsep. This must be so,

since only loop diagrams can cut off the divergences of real matrix elements

NLOwPS’s are better than MEC since:

+ There is no δsep dependence

+ The computation of total rates is meaningful and reliable

NLOwPS’s are worse than MEC since:

− The number of hard legs is smaller

− There are negative weights

A realistic goal: CKKW in NLOwPS’s (i.e. multi-leg, NLO generators)



What does NLO mean?

Consider Higgs production:

dσ

dpT

=
(

Aα2
S

+ Bα3
S

)

δ(pT ) + C(pT )α3
S

∫ ∞

pmin

T

dpT

dσ

dpT

= C3α
3
S
, pmin

T
> 0

= D2α
2
S

+ D3α
3
S
, pmin

T
= 0

pmin
T

> 0 ⇒ LO, pmin
T

= 0 ⇒ NLO

The answer depends on the observable, and even on the kinematic range considered.

So this definition cannot be adopted in the context of event generators

NkLO accuracy in event generators is defined by the number k of extra gluons (either

virtual or real) wrt the LO contribution (hopefully we all agree on LO definition)



The actual NLOwPS’s

• MC@NLO (Webber & SF; Nason, Webber & SF)

Based on NLO subtraction method

Formulated in general, interfaced to Herwig

Processes implemented: H1H2 −→ W+W−, W±Z, ZZ, bb̄, tt̄, H0, W±, Z/γ

• Φ-veto (Dobbs & Lefebvre)

Based on NLO slicing method

Avoids negative weights, at the price of double counting

Processes implemented: H1H2 −→ Z

• grcNLO (Kurihara et al – GRACE)

Based on NLO hybrid slicing method, computes ME’s numerically

Double counts, if the parton shower is not built ad hoc

Process implemented: H1H2 −→ Z

A proposal by Collins aims at including NLL effects in showers, but lacks gluon emission

so far. Φ-veto is based on an old proposal by Baer&Reno; jets in DIS have been

considered by Pötter&Schörner using a similar method. Soper&Krämer implemented

e+e− → 3 jets (but without a realistic MC)



Fixed-order versus MC

NLO cross section (based on subtraction)
(

dσ

dO

)

subt

=
∑

ab

∫

dx1 dx2 dφ3 fa(x1)fb(x2)

[

δ(O − O(2 → 3))M
(r)
ab (x1, x2, φ3) +

δ(O − O(2 → 2))
(

M
(b,v,c)
ab (x1, x2, φ2) −M

(c.t.)
ab (x1, x2, φ3)

)

]

MC

FMC =
∑

ab

∫

dx1 dx2 dφ2 fa(x1)fb(x2) F
(2→2)
MC M

(b)
ab (x1, x2, φ2)

� Matrix elements −→ normalization, hard kinematic configurations

� δ-functions, F
(2→2)
MC ≡ showers −→ kinematic “evolution”

⇒ (

δ(O − O(2 → 2)), δ(O − O(2 → 3))
)

−→
(

F
(2→2)
MC ,F

(2→3)
MC

) ?



MC@NLO is based on a modified subtraction

The naive prescription doesn’t work: MC evolution results in spurious NLO terms

We eliminate them by hand

MC@NLO

FMC@NLO =
∑

ab

∫

dx1 dx2 dφ3 fa(x1)fb(x2)

[

F
(2→3)
MC

(

M
(r)
ab (x1, x2, φ3) −M(MC)

ab (x1, x2, φ3)
)

+

F
(2→2)
MC

(

M
(b,v,c)
ab (x1, x2, φ2) −M

(c.t.)
ab (x1, x2, φ3) + M(MC)

ab (x1, x2, φ3)
)

]

M(MC)

F(ab) = F
(2→2)
MC M

(b)
ab + O(α2

S
αb

S
)

There are two MC-induced contributions: they eliminate the spurious NLO terms due to

the branching of a final-state parton, and to the non-branching probability



Peculiarities of MC@NLO

Let’s look at the weight functions

wH(φ3) = M
(r)
ab (x1, x2, φ3)−M(MC)

ab (x1, x2, φ3)

wS(φ3) = M
(b,v,c)
ab (x1, x2, φ2) −M

(c.t.)
ab (x1, x2, φ3)+M(MC)

ab (x1, x2, φ3)

which are finite (i.e. don’t diverge) for any φ3

The MC provides local, observable-independent,
counterterms =⇒ greater numerical stability, unweighting

possible

MC@NLO can thus be minimally seen as a way to stabilize NLO computations, through

the construction of a simplified MC whose only aim is to furnish the local counterterms.

In this sense, the generalization to NNLO should not be too difficult



MC@NLO: summary

1. Choose your favourite MC (Herwig, Pythia), and compute analytically the “NLO

cross section”, i.e., the first emission. This is an observable-independent,

process-independent procedure, which is done once and for all

2. Combine the LO+NLO matrix elements of the process to be implemented according

to the universal, observable-independent, subtraction-based formalism of SF,

Kunszt, Signer for cancelling IR divergences. All counterterm, virtual, and LO

contributions must have an unique kinematics (achieved through a projection)

3. Add and subtract the MC counterterms, computed in step 1, to the quantity

computed in step 2. The resulting expression allows to generate the hard kinematic

configurations, which are eventually fed into the MC showers as initial conditions

Negative weights don’t mean negative cross sections. They arise from a different

mechanism wrt those at the NLO, and their number is fairly limited



MC@NLO 2.31 [hep-ph/0402116]

IPROC Process

–1350–IL H1H2 → (Z/γ∗ →)lIL l̄IL + X

–1360–IL H1H2 → (Z →)lIL l̄IL + X

–1370–IL H1H2 → (γ∗ →)lIL l̄IL + X

–1460–IL H1H2 → (W+ →)l+ILνIL + X

–1470–IL H1H2 → (W− →)l−ILν̄IL + X

–1396 H1H2 → γ∗(→
∑

i fif̄i) + X

–1397 H1H2 → Z0 + X

–1497 H1H2 → W+ + X

–1498 H1H2 → W− + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 H1H2 → tt̄ + X

–2850 H1H2 → W+W− + X

–2860 H1H2 → Z0Z0 + X

–2870 H1H2 → W+Z0 + X

–2880 H1H2 → W−Z0 + X

• Works identically to HERWIG:

the very same analysis routines

can be used

• Reads shower initial conditions

from an event file (as in ME cor-

rections)

• Exploits Les Houches accord for

process information and com-

mon blocks

• Features a self contained library

of PDFs with old and new sets

alike

• LHAPDF will also be imple-

mented



NLOwPS: Φ-veto

Exploit a proposal by Baer&Reno to get rid of the soft/collinear configurations:
∫

φ0

dφ3

(

M
(b,v,c)
ab + M

(r)
ab

)

= 0

Another (freely defined) phase-space region φH ⊂ φ0 is populated by hard-emission

events (Pötter, Schörner, Dobbs)

FΦveto =
∑

ab

∫

dx1 dx2 dφ3 fa(x1)fb(x2)

[

F
(2→3)
MC M

(r)
ab (x1, x2, φ3) Θ(φ3 ∈ φH) +

F
(2→2)
MC M

(b,v,c)
ab (x1, x2, φ2) Θ

(

φ3 ∈ φ0 ∩ φH

)

+

]

+ Only positive weights

+ Doesn’t need to know details of MC implementation

– Double counting for φ3 ∈ φH , and discontinuity at ∂φH imply dependence

upon φH , which is hidden by integration over Bjorken x’s

– Strictly speaking, the (perturbative) result is non-perturbative (φ0 ∼ exp(−1/αS))



NLOwPS: grcNLO

Partition the phase space as in standard slicing (i.e., define a non-soft, non collinear

region φNSC), and subtract there the real counterterm:

FgrcNLO =
∑

ab

∫

dx1 dx2 dφ3 fa(x1)fb(x2)

[

F
(2→3)
MC

(

M
(r)
ab (x1, x2, φ3) −M

(c.t.)
ab (x1, x2, φ3)

)

Θ(φ3 ∈ φNSC) +

F
(2→2)
MC M

(b,v,c)
ab (x1, x2, φ2)

]

This formally coincides with MC@NLO, provided that φNSC is the full phase space, and

M(MC)

ab ≡ M
(c.t.)
ab

This condition cannot be imposed: it must result from the MC implementation

+ All matrix elements generated numerically

– Double counting if M(MC)

ab is not built ad hoc

– Condition on M(MC)

ab implies the construction of a new MC



What to expect from an NLOwPS (here MC@NLO)

• MC@NLO rate = NLO rate =⇒ K-factors are included consistently

• MC@NLO- and MC-predicted shapes are identical where MC does a good job

• S+0 jet and S+1 jet treated exactly, S+n jets (n > 1) better than in MC’s

• No dependence on δsep =⇒ tuning is the same as in ordinary MC’s

• Some negative-weight events, to be subtracted (rather than added) from histograms



Single-inclusive b at the Tevatron

No significant discrepancy with data

• No PTMIN dependence in MC@NLO =⇒ solid predictions down to pT = 0, no

“perturbative-parameter tuning” (more work on b hadronization parameters needed)

• Full agreement with NLL+NLO computation (FONLL, Cacciari&Nason), if the large

dependence (at small pT ) on the hadronization scheme of the latter is taken into

account



Is the agreement with the resummed result accidental?

The same happens with Higgs. The result of Bozzi, Catani, de Florian, Grazzini has a

matching condition similar to MC@NLO, in that it conserves the total rate

� The agreement with the analytically-resummed result improves when the logarithmic

accuracy of the latter is increased −→ Herwig has more logs than you expect

� We can now apply any cuts we like (decay products, recoiling system) – a fully

realistic jet-veto analysis is doable

� Beware: vastly different from Pythia!



Conclusions

There has been substantial theoretical progress in MC’s in the past three years or so.

The timing is just right, since it’s the Tevatron and the LHC that demand the

construction of improved MC tools

MEC for multileg processes are firmly established

• Expect CKKW to become part of HERWIG, PYTHIA, and SHERPA releases

• Reliable estimates for many backgrounds to new physics

NLOwPS’s improve NLO computations and MC simulations in several respects

• MC@NLO is numerically more stable than NLO computations

• Realistic final states, including hadronization, are part of NLO predictions

• NLOwPS’s are the only way in which K-factors can be embedded into MC’s

• Hard radiation is incorporated in MC’s, without any kinematical distortion

NLOwPS/MEC work just like ordinary MC’s, and must be seen as upgrades of the

latter. So the answer to the question: when do I have to use them? is: always


