A Galois connection related to the uniform approximability of continuous functions

Peter Eliaš 30th International Summer Conference on Real Functions Theory Stará Lesná, 2016

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Outline

1. Motivation

- Kronecker and Dirichlet sets
- strongly Dirichlet and k-Dirichlet sets

2. Definitions

- uniform approximability
- Galois connections
- concept lattices

3. Results and open problems

- Kronecker and Dirichlet sets revisited
- approximability by constant functions
- Kuratowski lower limits
- quotient spaces

Motivation

 \mathbb{T} – the unit circle

- $\mathbb{T} = \mathbb{R}/\sim$, where $x \sim y \Leftrightarrow x y \in \mathbb{Z}$
- addition modulo integers, quotient topology
- invariant metric $d(x,y) = \|x-y\|,$ where $\|x\| = \min\{|x-k|: k \in \mathbb{Z}\}$

C(X,Y) – space of all continuous functions $f:X\to Y$ with the topology of uniform convergence

C(X) – family of all closed subsets of X

characters of \mathbb{T} – continuous group homomorphisms $\chi \in C(\mathbb{T}, \mathbb{T})$ these are exactly the functions $\chi_n(x) = nx$ for $n \in \mathbb{Z}$

Definition (Hewitt, Kakutani (1960), Rudin (1962))

A set $E \in C(\mathbb{T})$ is a Kronecker set if $(\forall f \in C(\mathbb{T}, \mathbb{T}))(\forall \varepsilon > 0)(\exists n)(\forall x \in E) ||\chi_n(x) - f(x)|| < \varepsilon.$

Definition (Kahane (1969)) A set $E \in C(\mathbb{T})$ is a Dirichlet set if $(\forall \varepsilon > 0)(\exists n \neq 0)(\forall x \in E) ||\chi_n(x)|| < \varepsilon.$

- we can assume that n is arbitrarily large (in both definitions)
- on a Kronecker set, each continuous function is a uniform limit of a sequence of characters
- on a Dirichlet set, zero function is a uniform limit of a sequence of characters

 \mathcal{K} , \mathcal{D} – families of all Kronecker and Dirichlet sets

For $\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$ and $\mathcal{E} \subseteq C(\mathbb{T})$ define

$$\begin{split} F(\mathcal{E}) &= \big\{ f \in C(\mathbb{T}, \mathbb{T}) : (\forall E \in \mathcal{E}) (\exists \text{ increasing } \{n_k\}_{k \in \mathbb{N}}) \ \chi_{n_k} \rightrightarrows f \text{ on } E \big\}, \\ G(\mathcal{F}) &= \big\{ E \in C(\mathbb{T}) : (\forall f \in \mathcal{F}) (\exists \text{ increasing } \{n_k\}_{k \in \mathbb{N}}) \ \chi_{n_k} \rightrightarrows f \text{ on } E \big\}. \end{split}$$

We obtain

•
$$\mathcal{K} = G(C(\mathbb{T}, \mathbb{T})), \ F(\mathcal{K}) = C(\mathbb{T}, \mathbb{T}),$$

• $\mathcal{D} = G(\{\chi_0\}) = G(\{\chi_n : n \in \mathbb{Z}\}), F(\mathcal{D}) = \{\chi_n : n \in \mathbb{Z}\}.$

Question

For what pairs $(\mathcal{F}, \mathcal{E})$ one can have $\mathcal{F} = F(\mathcal{E})$ and $\mathcal{E} = G(\mathcal{F})$?

Such pairs can be viewed as generalizations of the families of Kronecker and Dirichlet sets.

Theorem

Let $C_k = \{\chi_n + c : n \in \mathbb{Z}, c \in \mathbb{T}, kc = 0\}$, $\mathcal{D}_k = G(\mathcal{C}_k)$, for $k \in \mathbb{Z}$. Then $F(\mathcal{D}_k) = \mathcal{C}_k$.

sets in \mathcal{D}_0 – strongly Dirichlet sets sets in \mathcal{D}_k (for $k \neq 0$) – k-Dirichlet sets

Lemma

Let $f \in C(\mathbb{T}, \mathbb{T})$.

- **1.** $f \in \{\chi_n : n \in \mathbb{Z}\} \Leftrightarrow (\forall x, y \in \mathbb{T}) \ f(x+y) = f(x) + f(y)$
- **2.** $f \in \mathcal{C}_0 \Leftrightarrow (\forall x, y \in \mathbb{T}) f(2x y) = 2f(x) f(y)$
- **3.** $f \in \mathcal{C}_k \Leftrightarrow (\forall x, y \in \mathbb{T}) \ f(kx+y) = kf(x) + f(y)$

Question

Are there other pairs $(\mathcal{F}, \mathcal{E})$ satisfying $\mathcal{F} = F(\mathcal{E})$ and $\mathcal{E} = G(\mathcal{F})$?

Yes, but we have no characterization of such pairs.

Definitions

 $\begin{array}{l} X-\text{topological space, }(Y,d)-\text{metric space}\\ f\in C(X,Y)\text{, }E\in C(X)\text{, }\Phi\subseteq C(X,Y) \end{array}$

Definition

f is uniformly approximable by functions from Φ on a set E if there exists a one-to-one sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ in Φ such that $f_n \rightrightarrows f$ on E.

Fact

- 1. If f_n , f are continuous and $f_n \rightrightarrows f$ on E (not necessarily closed) then $f_n \rightrightarrows f$ on cl(E).
- 2. If X is normal, E ∈ C(X), and f ∈ C(E, ℝ), then by Tietze-Urysohn Theorem there exists g ∈ C(X, ℝ) such that g ↾ E = f. Holds also for T in place of ℝ.

Galois connection – a pair of mappings between two partial orders

- **1.** $F: P \rightarrow Q$, $G: Q \rightarrow P$
- **2.** $q \leq_Q F(p) \Leftrightarrow p \leq_P G(q)$ for all $p \in P$, $q \in Q$
 - compound mappings $FG: P \to P$, $GF: Q \to Q$ are closure operators (i.e., $p \leq_P FG(p)$, FG(FG(p)) = FG(p) for all $p \in P$)
 - $p \in P$ is closed iff p = G(q) for some $q \in Q$
 - pairs (p,q) such that q = F(p), p = G(q) form a complete lattice when ordered by $(p,q) \le (p',q') \Leftrightarrow p \le_P p' \Leftrightarrow q' \le_Q q$
 - a Galois connection between (P(X), ⊆) and (P(Y), ⊆) is naturally obtained from a binary relation R ⊆ X × Y :
 F(A) = {y ∈ Y : (∀x ∈ A) (x, y) ∈ R}
 G(B) = {x ∈ X : (∀y ∈ B) (x, y) ∈ R}

define $R_{\Phi} \subseteq C(X, Y) \times C(X)$, where $\Phi \subseteq C(X, Y)$: $(f, E) \in R_{\Phi}$ iff f is uniformly approximable by functions from Φ on E

a Galois connection generated by R_Φ :

$$F_{\Phi}(\mathcal{E}) = \left\{ f \in C(X, Y) : (\forall E \in \mathcal{E}) \ (f, E) \in R_{\Phi} \right\},\$$
$$G_{\Phi}(\mathcal{F}) = \left\{ E \in C(X) : (\forall f \in \mathcal{F}) \ (f, E) \in R_{\Phi} \right\},\$$

where $\mathcal{F} \subseteq C(X, Y)$, $\mathcal{E} \subseteq C(X)$

 \mathcal{L}_{Φ} – complete lattice obtained from the Galois connection (F_{Φ}, G_{Φ})

Char = $\{\chi_n : n \in \mathbb{Z}\}$, $X = Y = \mathbb{T}$

- $(C(\mathbb{T},\mathbb{T}),\mathcal{K})$ is the top element of the lattice $\mathcal{L}_{\mathsf{Char}}$
- $(\emptyset, \mathcal{P}(\mathbb{T}))$ is the bottom element of $\mathcal{L}_{\mathsf{Char}}$
- (Char, $\mathcal{D})$ is the only atom in $\mathcal{L}_{\mathsf{Char}}$
- $(\mathcal{C}_k, \mathcal{D}_k) \leq (\mathcal{C}_{k'}, \mathcal{D}_{k'}) \Leftrightarrow k \mid k',$ where $\mathcal{C}_k = \{\chi_n + c : n \in \mathbb{Z}, c \in \mathbb{T}, kc = 0\}, \mathcal{D}_k = G(\mathcal{C}_k)$
- there are pairs between (Char, D) and $(C(\mathbb{T}, \mathbb{T}), \mathcal{K})$ other than (C_k, D_k)

 $Const = \{ f \in C(\mathbb{R}, \mathbb{R}) : f \text{ is constant} \}, X = Y = \mathbb{R}$

Fact

 $(f,E) \in R_{\mathsf{Const}}$ iff $f \upharpoonright E$ is constant

Question

For what pairs $(\mathcal{F}, \mathcal{E}) \in C(\mathbb{R}, \mathbb{R}) \times C(\mathbb{R})$ one has $(\mathcal{F}, \mathcal{E}) \in \mathcal{L}_{Const}$?

Theorem

Let $(\mathcal{F},\mathcal{E})\in\mathcal{L}_{\mathsf{Const.}}$ Then $\mathcal E$ is closed under taking

- closed subsets,
- overlapping unions,
- Kuratowski lower limits of nets.

Moreover, \mathcal{E} contains all singletons.

Kuratowski lower limit of a sequence of sets:

$$\operatorname{Li}_{n \to \infty} E_n = \left\{ x : \text{there is a sequence } \{x_n\}_{n \in \mathbb{N}} \text{ such that} \\ x_n \in E_n \text{ for every } n \text{ and } x_n \to x \right\}$$

Kuratowski lower limit of a net:

$$\begin{split} \mathrm{Li}_{p\in P}E_p &= \big\{x: \text{there is a net } \{x_p\}_{p\in P} \text{ such that} \\ & x_p\in E_p \text{ for every } p \text{ and } x_p\to x\big\}, \end{split}$$

where \boldsymbol{P} is a directed partial order

Fact

 $\operatorname{Li}_{p\in P}E_p$ is closed provided that each E_p is closed.

Question

Let $\mathcal{E} \subseteq C(\mathbb{R})$ contains all singletons and is closed under taking closed subsets, overlapping unions, and Kuratowski lower limits of nets. Does there always exist $\mathcal{F} \subseteq C(\mathbb{R},\mathbb{R})$ such that $(\mathcal{F},\mathcal{E}) \in \mathcal{L}_{Const}$?

Question

Can one replace nets by sequences? If $\{E_p\}_{p\in P}$ is a net in $C(\mathbb{R})$, can one find a sequence $\{p_n\}_{n\in\mathbb{N}}$ such that $\operatorname{Li}_{p\in P}E_p = \operatorname{Li}_{n\to\infty}E_{p_n}$?

Notation

for $\mathcal{E}\subseteq C(\mathbb{R})$ containing all singletons and is closed under taking closed subsets and overlapping unions,

denote $P_{\mathcal{E}}$ a partition of \mathbb{R} into closed sets such that $\mathcal{E} = \bigcup_{E \in P_{\mathcal{E}}} C(E)$

Question

Let $\mathcal{E} \subseteq C(\mathbb{R})$. Does there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $G_{\text{Const}}(\{f\}) = \mathcal{E}$?

P – a partition of a topological space X X/P – the quotient space X/\sim , where \sim is the equivalence associated with the partition P

Fact

- **1.** $P_{G_{\text{Const}}(\{f\})}$ is the family of all fibers (levels) of f.
- 2. A partition $P \subseteq C(\mathbb{R})$ is a level set iff the quotient space \mathbb{R}/P is homeomorphic to an interval or a point.

Question

Let $\mathcal{E} \subseteq C(\mathbb{R})$. Does there exists $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $G_{\mathsf{Const}}(\mathcal{F}) = \mathcal{E}$?

Fact

$$G_{\mathsf{Const}}(\mathcal{F}) = \bigcap_{f \in \mathcal{F}} G_{\mathsf{Const}}(\{f\}).$$

Theorem

Let $\mathcal{E} \subseteq C(\mathbb{R})$. The following conditions are equivalent.

- **1.** There exists $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $G_{\text{Const}}(\mathcal{F}) = \mathcal{E}$.
- The quotient space ℝ/P_ε is a connected subspace of cube ℝ^X for some X.
- **3.** The quotient space $\mathbb{R}/P_{\mathcal{E}}$ is Tychonoff.