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Motivation

T – the unit circle

T = R/∼, where x ∼ y ⇔ x− y ∈ Z

addition modulo integers, quotient topology

invariant metric d(x, y) = ‖x− y‖, where

‖x‖ = min{|x− k| : k ∈ Z}

C(X,Y ) – space of all continuous functions f : X → Y with the

topology of uniform convergence

C(X) – family of all closed subsets of X

characters of T – continuous group homomorphisms χ ∈ C(T,T)

these are exactly the functions χn(x) = nx for n ∈ Z



Definition (Hewitt, Kakutani (1960), Rudin (1962))

A set E ∈ C(T) is a Kronecker set if

(∀f ∈ C(T,T))(∀ε > 0)(∃n)(∀x ∈ E) ‖χn(x)− f(x)‖ < ε.

Definition (Kahane (1969))

A set E ∈ C(T) is a Dirichlet set if

(∀ε > 0)(∃n 6= 0)(∀x ∈ E) ‖χn(x)‖ < ε.

we can assume that n is arbitrarily large (in both definitions)

on a Kronecker set, each continuous function is a uniform limit of a

sequence of characters

on a Dirichlet set, zero function is a uniform limit of a sequence of

characters



K, D – families of all Kronecker and Dirichlet sets

For F ⊆ C(T,T) and E ⊆ C(T) define

F (E) =
{
f ∈ C(T,T) : (∀E ∈ E)(∃ increasing {nk}k∈N) χnk

⇒ f on E
}
,

G(F) =
{
E ∈ C(T) : (∀f ∈ F)(∃ increasing {nk}k∈N) χnk

⇒ f on E
}
.

We obtain

K = G(C(T,T)), F (K) = C(T,T),

D = G({χ0}) = G({χn : n ∈ Z}), F (D) = {χn : n ∈ Z}.

Question

For what pairs (F , E) one can have F = F (E) and E = G(F)?

Such pairs can be viewed as generalizations of the families of Kronecker

and Dirichlet sets.



Theorem

Let Ck = {χn + c : n ∈ Z, c ∈ T, kc = 0}, Dk = G(Ck), for k ∈ Z.

Then F (Dk) = Ck.

sets in D0 – strongly Dirichlet sets

sets in Dk (for k 6= 0) – k-Dirichlet sets

Lemma

Let f ∈ C(T,T).

1. f ∈ {χn : n ∈ Z} ⇔ (∀x, y ∈ T) f(x+ y) = f(x) + f(y)

2. f ∈ C0 ⇔ (∀x, y ∈ T) f(2x− y) = 2f(x)− f(y)

3. f ∈ Ck ⇔ (∀x, y ∈ T) f(kx+ y) = kf(x) + f(y)

Question

Are there other pairs (F , E) satisfying F = F (E) and E = G(F)?

Yes, but we have no characterization of such pairs.



Definitions

X – topological space, (Y, d) – metric space

f ∈ C(X,Y ), E ∈ C(X), Φ ⊆ C(X,Y )

Definition

f is uniformly approximable by functions from Φ on a set E if

there exists a one-to-one sequence of functions {fn}n∈N in Φ

such that fn ⇒ f on E.

Fact

1. If fn, f are continuous and fn ⇒ f on E (not necessarily closed)

then fn ⇒ f on cl(E).

2. If X is normal, E ∈ C(X), and f ∈ C(E,R), then by

Tietze-Urysohn Theorem there exists g ∈ C(X,R) such that

g � E = f .

Holds also for T in place of R.



Galois connection – a pair of mappings between two partial orders

1. F : P → Q, G : Q→ P

2. q ≤Q F (p)⇔ p ≤P G(q) for all p ∈ P , q ∈ Q

compound mappings FG : P → P, GF : Q→ Q are closure

operators (i.e., p ≤P FG(p), FG(FG(p)) = FG(p) for all p ∈ P )

p ∈ P is closed iff p = G(q) for some q ∈ Q
pairs (p, q) such that q = F (p), p = G(q) form a complete lattice

when ordered by (p, q) ≤ (p′, q′)⇔ p ≤P p′ ⇔ q′ ≤Q q

a Galois connection between (P(X),⊆) and (P(Y ),⊆) is naturally

obtained from a binary relation R ⊆ X × Y :

F (A) =
{
y ∈ Y : (∀x ∈ A) (x, y) ∈ R

}
G(B) =

{
x ∈ X : (∀y ∈ B) (x, y) ∈ R

}



Galois connection related to the uniform approximability

define RΦ ⊆ C(X,Y )× C(X), where Φ ⊆ C(X,Y ) :

(f,E) ∈ RΦ iff f is uniformly approximable by functions from Φ on E

a Galois connection generated by RΦ:

FΦ(E) =
{
f ∈ C(X,Y ) : (∀E ∈ E) (f,E) ∈ RΦ

}
,

GΦ(F) =
{
E ∈ C(X) : (∀f ∈ F) (f,E) ∈ RΦ

}
,

where F ⊆ C(X,Y ), E ⊆ C(X)

LΦ – complete lattice obtained from the Galois connection (FΦ, GΦ)



Kronecker and Dirichlet sets revisited

Char = {χn : n ∈ Z}, X = Y = T

(C(T,T),K) is the top element of the lattice LChar

(∅,P(T)) is the bottom element of LChar

(Char,D) is the only atom in LChar

(Ck,Dk) ≤ (Ck′ ,Dk′)⇔ k | k′,
where Ck = {χn + c : n ∈ Z, c ∈ T, kc = 0}, Dk = G(Ck)

there are pairs between (Char,D) and (C(T,T),K) other than

(Ck,Dk)



Uniform approximability by constant functions

Const = {f ∈ C(R,R) : f is constant}, X = Y = R

Fact

(f,E) ∈ RConst iff f � E is constant

Question

For what pairs (F , E) ∈ C(R,R)× C(R) one has (F , E) ∈ LConst?

Theorem

Let (F , E) ∈ LConst. Then E is closed under taking

closed subsets,

overlapping unions,

Kuratowski lower limits of nets.

Moreover, E contains all singletons.



Kuratowski lower limits

Kuratowski lower limit of a sequence of sets:

Lin→∞En =
{
x : there is a sequence {xn}n∈N such that

xn ∈ En for every n and xn → x
}

Kuratowski lower limit of a net:

Lip∈PEp =
{
x : there is a net {xp}p∈P such that

xp ∈ Ep for every p and xp → x
}
,

where P is a directed partial order

Fact

Lip∈PEp is closed provided that each Ep is closed.



Question

Let E ⊆ C(R) contains all singletons and is closed under taking closed

subsets, overlapping unions, and Kuratowski lower limits of nets.

Does there always exist F ⊆ C(R,R) such that (F , E) ∈ LConst?

Question

Can one replace nets by sequences?

If {Ep}p∈P is a net in C(R), can one find a sequence {pn}n∈N such that

Lip∈PEp = Lin→∞Epn
?

Notation

for E ⊆ C(R) containing all singletons and is closed under taking closed

subsets and overlapping unions,

denote PE a partition of R into closed sets such that E =
⋃

E∈PE
C(E)



Quotient spaces

Question

Let E ⊆ C(R). Does there exists f ∈ C(R,R) such that

GConst({f}) = E?

P – a partition of a topological space X

X/P – the quotient space X/∼, where ∼ is the equivalence associated

with the partition P

Fact

1. PGConst({f}) is the family of all fibers (levels) of f .

2. A partition P ⊆ C(R) is a level set iff the quotient space R/P is

homeomorphic to an interval or a point.



Question

Let E ⊆ C(R). Does there exists F ⊆ C(R,R) such that GConst(F) = E?

Fact

GConst(F) =
⋂

f∈F GConst({f}).

Theorem

Let E ⊆ C(R). The following conditions are equivalent.

1. There exists F ⊆ C(R,R) such that GConst(F) = E .

2. The quotient space R/PE is a connected subspace of cube RX for

some X.

3. The quotient space R/PE is Tychonoff.


