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Preserving the convergence of series

Theorem (R. Rado)
Let f : R — R. The following conditions are equivalent.

1. f preserves the convergence of series, i.e., for every {x,}nen,
if > x, converges then ) f(xy) converges,

2. 3Ja€R 30 >0Vx € (—6,0) f(x) =ax.
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Changing convergence type of a series

Let A, B be families of sequences of real numbers.
Denote F'(A, B) the family of all functions f : R — R mapping
every sequence {zy }nen € A to a sequence {f(xy)}nen € B.

Peter Elias Mapping relatively convergent series to divergent series



Changing convergence type of a series

Let A, B be families of sequences of real numbers.
Denote F'(A, B) the family of all functions f : R — R mapping
every sequence {zy }nen € A to a sequence {f(xy)}nen € B.

Consider the following families:

C = {{zn}nen : Yz converges},

AC = {{zn}nen : 3z, absolutely converges},

RC = {{zn}nen : 3 @y, relatively converges} = C'\ AC,
D = {{zn}nen : O @y, diverges}.

In Borsik's paper, all families F'(A, B) are characterized, for
A e {C,AC,RC, D}, except F(D,D) and F(RC, D).
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Characterizing F'(A, B) by a family of closed sets

Fact
Let A,B € {C,AC,RC,D}.
If f e F(A,B) and g C cl(f) then g € F(A, B).

g C cl(f) means that the graph of f is a subset of the topological
closure of graph of ¢
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Characterizing I'(A, B) by a family of closed sets

Fact
Let A,B € {C,AC,RC,D}.
If f e F(A,B) and g C cl(f) then g € F(A, B).

g C cl(f) means that the graph of f is a subset of the topological
closure of graph of ¢

Corollary

Let A,B € {C,AC,RC,D}.
There exists C, a family of closed subsets of R?, such that
feF(AB)«<— 31X e(C fCX.
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Functions preserving the divergence of series

Theorem (P.E., Stara Lesna 2008)
F(D,D)={f:3a3b>0(f CY(a,b) V fC Z(a,b))},

where Y(a,b) = {(z,y) €R?>:2=0 V |y| >b V |z| < ay} and
Z(a,b) = {(z,y) ER2:2=0 V |y|>b V x =ay}.
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Functions preserving the divergence of series

Theorem (P.E., Stara Lesna 2008)
F(D,D)={f:3a3b>0(f CY(a,b) V fC Z(a,b))}, J

where Y(a,b) = {(z,y) €R?>:2=0 V |y| >b V |z| < ay} and
Z(a,b) = {(z,y) ER2:2=0 V |y|>b V x =ay}.
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Characterizing family F'(RC, D)

ar if x>0,

bx if x <O.
Then f € F(RC,D) <= a #b.

Let a,b € R and f(z) =

f € F(RC,D) f ¢ F(RC,D)
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Characterizing family F'(RC, D)

ForaeR, b,c >0, d € {—1,1}, denote

K(a,b,c,d) ={(z,y) ER?*:2=0 V |z|>c V |y >cV
dy > ax +b|x|},
Lic,d) ={(z,y) eR?*: |y| > ¢ V dz <0 V dz > c}.
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Characterizing family F'(RC, D)

ForaeR, b,c >0, d € {—1,1}, denote

K(a,b,c,d) ={(z,y) ER?*:2=0 V |z|>c V |y >cV
dy > ax + b|x|},
Lic,d) ={(z,y) eR?*: |y| > ¢ V dz <0 V dz > c}.

e o
% %

K(a,b,c,d) L(c,d)

Peter Elias Mapping relatively convergent series to divergent series



Characterizing family F'(RC, D)

For f : R — R and € > 0 denote

R;(e) = {f(”“"):xe (—£,0) A |f(z)] <5},

X

Rf(e) = {f(“’”):xe 0,6) A |f(2)] <5}.

T
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Theorem

Let f: R — R. TFAE:

Q@ f € F(RC,D),

Q F>0R;(e)=0V R}’(E):@ v

inf R () > sup R;{ () V inf R}F(E) > sup R (¢)
©Q Jad>03c>03de{-1,1} (f € K(a,b,c,d) V
f C L(c,d)).

«O)>» «F»r « =»
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Characterizing family F'(RC, D)

Theorem
Let f: R — R. TFAE:
Q fe F(RC,D),
Q F>0R;(e)=0V R?(@)z@ v
inf R () > sup R}r(s) V inf R]f(s) > sup R} (¢),
© JaHb>03c>03de {-1,1} (f C K(a,b,c,d) V
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Characterizing family F'(RC, D)

Theorem
Let f: R — R. TFAE:
Q fe F(RC,D),
Q F>0R;(e)=0V R?(@)z@ v
inf R () > sup R}r(s) V inf ij(s) > sup R} (¢),
© JaHb>03c>03de {-1,1} (f C K(a,b,c,d) V
f C L(e,d)).

Conditions inf R (¢) > R}_(E), inf R}'(e) > Ry (¢) mean that the
envelops of sets R (¢), R;{(E) do not overlap.
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Sketch of the proof:

L R;(e)=0 = fCL(-1), Rf(e)=0 = fCL1)

«O)>» «F»r « =»



Characterizing family F'(RC, D)

Sketch of the proof:

L R;(e)=0 = fCL(-1), Rf(e)=0 = fCL1)

2. If dist(R (¢), Rj[(e)) =0 thén there exists {xl}le such that
S |zi) > 1 and for all 4, ‘Zgzl z;| <& and ‘Zgzl flxi)] < 2e.
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Characterizing family F'(RC, D)

Sketch of the proof:
L R;(e)=0 = fCL(-1), Rf(e)=0 = fCL1)

2. If dist(R (¢), R;{(e)) = 0 then there exists {z;}¥_, such that
S |zi) > 1 and for all 4, ‘Zgzl z;| < e and ‘Zgzl fz)| < 2e.
3. If dist(RJI(s),R}r(s)) >0, inf R, (e) < Rj[(e), and

inf R?(s) < R (e), then there exists {z;}%_, such that

S il > 1 and for all 4, ‘Zgzl z;| < e and ‘Zgzl f(zi)

< 3e.
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