Mapping relatively convergent series to divergent series

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

26th Summer Conference on Real Functions Theory Stará Lesná, 2012

Peter Eliaš Mapping relatively convergent series to divergent series

・ロト ・回 ト ・ヨト ・ヨト - ヨ

na a

References

- 1. R. Rado, A theorem on infinite series, J. London Math. Soc. **35** (1960), 273–276.
- 2. J. Borsík, J. Červeňanský, T. Šalát, Remarks on functions preserving convergence of infinite series, Real Anal. Exchange 21 (1995/96), 725-731.
- 3. P. Kostyrko, On convergence preserving transformations of infinite series Math. Slovaca 46 (1996), 239-243.
- **4.** R. J. Grinnell, *Functions preserving sequence spaces*, Real Anal. Exchange **25** (1999/2000), 239–256.
- 5. L. Drewnowski, Maps preserving convergence of series, Math. Slovaca **51** (2001), 75–91.
- 6. W. Freedman, Convergence preserving mappings on topological groups, Topology Appl. 154 (2007), 1089–1096.
- **7.** J. Borsík, Functions preserving some types of series, J. Appl. Anal. 14 (2008), 149–163. イロト イポト イヨト イヨト

Preserving the convergence of series

Theorem (R. Rado)

Let $f : \mathbb{R} \to \mathbb{R}$. The following conditions are equivalent.

- **1.** f preserves the convergence of series, i.e., for every $\{x_n\}_{n \in \mathbb{N}}$, if $\sum x_n$ converges then $\sum f(x_n)$ converges,
- **2.** $\exists a \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in (-\delta, \delta) \ f(x) = ax.$

イロン スポン スポン スポン 一部

Sac

Preserving the convergence of series

Theorem (R. Rado)

Let $f : \mathbb{R} \to \mathbb{R}$. The following conditions are equivalent.

- **1.** f preserves the convergence of series, i.e., for every $\{x_n\}_{n \in \mathbb{N}}$, if $\sum x_n$ converges then $\sum f(x_n)$ converges,
- **2.** $\exists a \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in (-\delta, \delta) \ f(x) = ax.$

Changing convergence type of a series

Let A, B be families of sequences of real numbers. Denote F(A, B) the family of all functions $f : \mathbb{R} \to \mathbb{R}$ mapping every sequence $\{x_n\}_{n \in \mathbb{N}} \in A$ to a sequence $\{f(x_n)\}_{n \in \mathbb{N}} \in B$.

Consider the following families:

$$C = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ converges}\},\$$

$$AC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ absolutely converges}\},\$$

$$RC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ relatively converges}\} = C \setminus AC,\$$

$$D = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ diverges}\}.$$

In Borsík's paper, all families F(A, B) are characterized, for $A \in \{C, AC, RC, D\}$, except F(D, D) and F(RC, D).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Let A, B be families of sequences of real numbers. Denote F(A, B) the family of all functions $f : \mathbb{R} \to \mathbb{R}$ mapping every sequence $\{x_n\}_{n \in \mathbb{N}} \in A$ to a sequence $\{f(x_n)\}_{n \in \mathbb{N}} \in B$.

Consider the following families:

$$C = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ converges}\},\$$

$$AC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ absolutely converges}\},\$$

$$RC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ relatively converges}\} = C \setminus AC,\$$

$$D = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ diverges}\}.$$

In Borsík's paper, all families F(A, B) are characterized, for $A \in \{C, AC, RC, D\}$, except F(D, D) and F(RC, D).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fact

Let $A, B \in \{C, AC, RC, D\}$. If $f \in F(A, B)$ and $g \subseteq cl(f)$ then $g \in F(A, B)$.

 $g \subseteq \mathrm{cl}(f)$ means that the graph of f is a subset of the topological closure of graph of g

Corollary

Let $A, B \in \{C, AC, RC, D\}$. There exists C, a family of closed subsets of \mathbb{R}^2 , such that $f \in F(A, B) \iff \exists X \in C \ f \subseteq X$.

・ロト ・回 ト ・ヨト ・ヨト - ヨ

NQ C

Fact

Let $A, B \in \{C, AC, RC, D\}$. If $f \in F(A, B)$ and $g \subseteq cl(f)$ then $g \in F(A, B)$.

 $g \subseteq \mathrm{cl}(f)$ means that the graph of f is a subset of the topological closure of graph of g

Corollary

Let $A, B \in \{C, AC, RC, D\}$. There exists C, a family of closed subsets of \mathbb{R}^2 , such that $f \in F(A, B) \iff \exists X \in C \ f \subseteq X$.

イロト イポト イヨト イヨト 二日

na a

Functions preserving the divergence of series

Theorem (P.E., Stará Lesná 2008)

 $F(D,D) = \{f: \exists a \ \exists b > 0 \ (f \subseteq Y(a,b) \ \lor \ f \subseteq Z(a,b))\},\$

where $Y(a, b) = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor |y| \ge b \lor |x| \le ay\}$ and $Z(a, b) = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor |y| \ge b \lor x = ay\}.$

Functions preserving the divergence of series

イロト イポト イヨト イヨト

3

Sar

Characterizing family F(RC, D)

Let
$$a, b \in \mathbb{R}$$
 and $f(x) = \begin{cases} ax & \text{if } x \ge 0, \\ bx & \text{if } x < 0. \end{cases}$
Then $f \in F(RC, D) \iff a \ne b.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Characterizing family F(RC, D)

For $a \in \mathbb{R}$, b, c > 0, $d \in \{-1, 1\}$, denote $K(a, b, c, d) = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor |x| \ge c \lor |y| \ge c \lor$ $dy \ge ax + b |x|\},$ $L(c, d) = \{(x, y) \in \mathbb{R}^2 : |y| \ge c \lor dx \le 0 \lor dx \ge c\}.$

Characterizing family F(RC, D)

For $a \in \mathbb{R}$, b, c > 0, $d \in \{-1, 1\}$, denote $K(a, b, c, d) = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor |x| \ge c \lor |y| \ge c \lor$ $dy \ge ax + b |x|\},$ $L(c, d) = \{(x, y) \in \mathbb{R}^2 : |y| \ge c \lor dx \le 0 \lor dx \ge c\}.$

Peter Eliaš

Mapping relatively convergent series to divergent series

For $f : \mathbb{R} \to \mathbb{R}$ and $\varepsilon > 0$ denote

$$R_f^-(\varepsilon) = \left\{ \frac{f(x)}{x} : x \in (-\varepsilon, 0) \land |f(x)| < \varepsilon \right\},$$
$$R_f^+(\varepsilon) = \left\{ \frac{f(x)}{x} : x \in (0, \varepsilon) \land |f(x)| < \varepsilon \right\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- Let $f : \mathbb{R} \to \mathbb{R}$. TFAE:
 - $\ \, \bullet \ \, f\in F(RC,D),$
 - $\exists \varepsilon > 0 \ R_f^-(\varepsilon) = \emptyset \ \lor \ R_f^+(\varepsilon) = \emptyset \ \lor$
 - $\inf R_f^-(\varepsilon) > \sup R_f^+(\varepsilon) \ \lor \ \inf R_f^+(\varepsilon) > \sup R_f^-(\varepsilon),$
 - $\exists a \exists b > 0 \exists c > 0 \exists d \in \{-1, 1\} (f \subseteq K(a, b, c, d) \lor f \subseteq L(c, d)).$

Conditions $\inf R_f^-(\varepsilon) > R_f^+(\varepsilon)$, $\inf R_f^+(\varepsilon) > R_f^-(\varepsilon)$ mean that the envelops of sets $R_f^-(\varepsilon)$, $R_f^+(\varepsilon)$ do not overlap.

イロト イポト イヨト イヨト

Let $f : \mathbb{R} \to \mathbb{R}$. TFAE:

- $\begin{array}{l} \textcircled{2} \quad \exists \varepsilon > 0 \ R_f^-(\varepsilon) = \emptyset \ \lor \ R_f^+(\varepsilon) = \emptyset \ \lor \\ \inf R_f^-(\varepsilon) > \sup R_f^+(\varepsilon) \ \lor \ \inf R_f^+(\varepsilon) > \sup R_f^-(\varepsilon), \end{array}$
- **3** $\exists a \ \exists b > 0 \ \exists c > 0 \ \exists d \in \{-1, 1\} \ (f \subseteq K(a, b, c, d) \lor f \subseteq L(c, d)).$

Conditions $\inf R_f^-(\varepsilon) > R_f^+(\varepsilon)$, $\inf R_f^+(\varepsilon) > R_f^-(\varepsilon)$ mean that the envelops of sets $R_f^-(\varepsilon)$, $R_f^+(\varepsilon)$ do not overlap.

Let $f : \mathbb{R} \to \mathbb{R}$. TFAE:

 $\ \, \bullet \ \, f\in F(RC,D),$

$$\exists \varepsilon > 0 \ R_f^-(\varepsilon) = \emptyset \ \lor \ R_f^+(\varepsilon) = \emptyset \ \lor \\ \inf R_f^-(\varepsilon) > \sup R_f^+(\varepsilon) \ \lor \ \inf R_f^+(\varepsilon) > \sup R_f^-(\varepsilon),$$

$$\exists a \exists b > 0 \exists c > 0 \exists d \in \{-1, 1\} (f \subseteq K(a, b, c, d) \lor f \subseteq L(c, d)).$$

Conditions $\inf R_f^-(\varepsilon) > R_f^+(\varepsilon)$, $\inf R_f^+(\varepsilon) > R_f^-(\varepsilon)$ mean that the envelops of sets $R_f^-(\varepsilon)$, $R_f^+(\varepsilon)$ do not overlap.

・ロト ・四ト ・ヨト ・ヨト

Let $f : \mathbb{R} \to \mathbb{R}$. TFAE:

 $f \in F(RC, D),$

$$\exists \varepsilon > 0 \ R_f^-(\varepsilon) = \emptyset \ \lor \ R_f^+(\varepsilon) = \emptyset \ \lor \\ \inf R_f^-(\varepsilon) > \sup R_f^+(\varepsilon) \ \lor \ \inf R_f^+(\varepsilon) > \sup R_f^-(\varepsilon),$$

$$\exists a \exists b > 0 \exists c > 0 \exists d \in \{-1, 1\} (f \subseteq K(a, b, c, d) \lor f \subseteq L(c, d)).$$

Conditions $\inf R_f^-(\varepsilon) > R_f^+(\varepsilon)$, $\inf R_f^+(\varepsilon) > R_f^-(\varepsilon)$ mean that the envelops of sets $R_f^-(\varepsilon)$, $R_f^+(\varepsilon)$ do not overlap.

・ロット (雪) (日) (日)

Sketch of the proof:

 $1. \ R^-_f(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, -1), \quad R^+_f(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, 1).$

2. If dist $(R_f^-(\varepsilon), R_f^+(\varepsilon)) = 0$ then there exists $\{x_i\}_{i=1}^k$ such that $\sum_{i=1}^k |x_i| \ge 1$ and for all j, $\left|\sum_{i=1}^j x_i\right| \le \varepsilon$ and $\left|\sum_{i=1}^j f(x_i)\right| \le 2\varepsilon$.

3. If dist $(R_f^-(\varepsilon), R_f^+(\varepsilon)) > 0$, $\inf R_f^-(\varepsilon) < R_f^+(\varepsilon)$, and $\inf R_f^+(\varepsilon) < R_f^-(\varepsilon)$, then there exists $\{x_i\}_{i=1}^k$ such that $\sum_{i=1}^k |x_i| \ge 1$ and for all j, $\left|\sum_{i=1}^j x_i\right| \le \varepsilon$ and $\left|\sum_{i=1}^j f(x_i)\right| \le 3\varepsilon$.

イロト イポト イヨト イヨト

Sketch of the proof:

 $1. \ R^-_f(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, -1), \quad R^+_f(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, 1).$

2. If dist $(R_f^-(\varepsilon), R_f^+(\varepsilon)) = 0$ then there exists $\{x_i\}_{i=1}^k$ such that $\sum_{i=1}^k |x_i| \ge 1$ and for all j, $\left|\sum_{i=1}^j x_i\right| \le \varepsilon$ and $\left|\sum_{i=1}^j f(x_i)\right| \le 2\varepsilon$.

3. If dist $(R_f^-(\varepsilon), R_f^+(\varepsilon)) > 0$, inf $R_f^-(\varepsilon) < R_f^+(\varepsilon)$, and inf $R_f^+(\varepsilon) < R_f^-(\varepsilon)$, then there exists $\{x_i\}_{i=1}^k$ such that $\sum_{i=1}^k |x_i| \ge 1$ and for all j, $\left|\sum_{i=1}^j x_i\right| \le \varepsilon$ and $\left|\sum_{i=1}^j f(x_i)\right| \le 3\varepsilon$.

イロト イポト イヨト イヨト 二日

Sketch of the proof:

$$\begin{split} &1. \ R_f^-(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, -1), \quad R_f^+(\varepsilon) = \emptyset \ \Rightarrow \ f \subseteq L(\varepsilon, 1). \\ &2. \ \text{If } \operatorname{dist}(R_f^-(\varepsilon), R_f^+(\varepsilon)) = 0 \ \text{then there exists } \{x_i\}_{i=1}^k \ \text{such that} \\ &\sum_{i=1}^k |x_i| \ge 1 \ \text{and for all } j, \ \left|\sum_{i=1}^j x_i\right| \le \varepsilon \ \text{and} \ \left|\sum_{i=1}^j f(x_i)\right| \le 2\varepsilon. \\ &3. \ \text{If } \operatorname{dist}(R_f^-(\varepsilon), R_f^+(\varepsilon)) > 0, \ \inf R_f^-(\varepsilon) < R_f^+(\varepsilon), \ \text{and} \\ &\inf R_f^+(\varepsilon) < R_f^-(\varepsilon), \ \text{then there exists} \ \{x_i\}_{i=1}^k \ \text{such that} \\ &\sum_{i=1}^k |x_i| \ge 1 \ \text{and for all } j, \ \left|\sum_{i=1}^j x_i\right| \le \varepsilon \ \text{and} \ \left|\sum_{i=1}^j f(x_i)\right| \le 3\varepsilon. \end{split}$$