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Preserving the convergence of series

Theorem (R. Rado)

Let f : R → R. The following conditions are equivalent.

1. f preserves the convergence of series, i.e., for every {xn}n∈N,
if

∑

xn converges then
∑

f(xn) converges,

2. ∃a ∈ R ∃δ > 0 ∀x ∈ (−δ, δ) f(x) = ax.
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Changing convergence type of a series

Let A, B be families of sequences of real numbers.
Denote F (A,B) the family of all functions f : R → R mapping
every sequence {xn}n∈N ∈ A to a sequence {f(xn)}n∈N ∈ B.

Consider the following families:

C =
{

{xn}n∈N :
∑

xn converges
}

,

AC =
{

{xn}n∈N :
∑

xn absolutely converges
}

,

RC =
{

{xn}n∈N :
∑

xn relatively converges
}

= C \AC,

D =
{

{xn}n∈N :
∑

xn diverges
}

.

In Borsík’s paper, all families F (A,B) are characterized, for
A ∈ {C,AC,RC,D}, except F (D,D) and F (RC,D).
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Characterizing F (A,B) by a family of closed sets

Fact

Let A,B ∈ {C,AC,RC,D}.
If f ∈ F (A,B) and g ⊆ cl(f) then g ∈ F (A,B).

g ⊆ cl(f) means that the graph of f is a subset of the topological
closure of graph of g

Corollary

Let A,B ∈ {C,AC,RC,D}.
There exists C, a family of closed subsets of R2, such that

f ∈ F (A,B) ⇐⇒ ∃X ∈ C f ⊆ X.
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Functions preserving the divergence of series

Theorem (P.E., Stará Lesná 2008)

F (D,D) = {f : ∃a ∃b > 0 (f ⊆ Y (a, b) ∨ f ⊆ Z(a, b))},

where Y (a, b) = {(x, y) ∈ R
2 : x = 0 ∨ |y| ≥ b ∨ |x| ≤ ay} and

Z(a, b) = {(x, y) ∈ R
2 : x = 0 ∨ |y| ≥ b ∨ x = ay}.
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Characterizing family F (RC,D)

Let a, b ∈ R and f(x) =

{

ax if x ≥ 0,

bx if x < 0.
Then f ∈ F (RC,D) ⇐⇒ a 6= b.

f ∈ F (RC,D) f /∈ F (RC,D)
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Characterizing family F (RC,D)

For a ∈ R, b, c > 0, d ∈ {−1, 1}, denote

K(a, b, c, d) = {(x, y) ∈ R
2 : x = 0 ∨ |x| ≥ c ∨ |y| ≥ c ∨

dy ≥ ax+ b |x|},

L(c, d) = {(x, y) ∈ R
2 : |y| ≥ c ∨ dx ≤ 0 ∨ dx ≥ c}.
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Characterizing family F (RC,D)

For f : R → R and ε > 0 denote

R−

f (ε) =

{

f(x)

x
: x ∈ (−ε, 0) ∧ |f(x)| < ε

}

,

R+

f (ε) =

{

f(x)

x
: x ∈ (0, ε) ∧ |f(x)| < ε

}

.
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Characterizing family F (RC,D)

Theorem

Let f : R → R. TFAE:

1 f ∈ F (RC,D),

2 ∃ε > 0 R−

f (ε) = ∅ ∨ R+

f (ε) = ∅ ∨

inf R−

f (ε) > supR+

f (ε) ∨ inf R+

f (ε) > supR−

f (ε),

3 ∃a ∃b > 0 ∃c > 0 ∃d ∈ {−1, 1} (f ⊆ K(a, b, c, d) ∨
f ⊆ L(c, d)).

Conditions inf R−

f (ε) > R+

f (ε), inf R
+

f (ε) > R−

f (ε) mean that the

envelops of sets R−

f (ε), R
+

f (ε) do not overlap.
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Characterizing family F (RC,D)

Sketch of the proof:

1. R−

f (ε) = ∅ ⇒ f ⊆ L(ε,−1), R+

f (ε) = ∅ ⇒ f ⊆ L(ε, 1).

2. If dist(R−

f (ε), R
+

f (ε)) = 0 then there exists {xi}ki=1 such that
∑k

i=1
|xi| ≥ 1 and for all j,

∣

∣

∣

∑j
i=1

xi

∣

∣

∣
≤ ε and

∣

∣

∣

∑j
i=1

f(xi)
∣

∣

∣
≤ 2ε.

3. If dist(R−

f (ε), R
+

f (ε)) > 0, inf R−

f (ε) < R+

f (ε), and

inf R+

f (ε) < R−

f (ε), then there exists {xi}
k
i=1 such that

∑k
i=1

|xi| ≥ 1 and for all j,
∣

∣

∣

∑j
i=1

xi

∣

∣

∣
≤ ε and

∣

∣

∣

∑j
i=1

f(xi)
∣

∣

∣
≤ 3ε.
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