Groups generated by Dirichlet sets

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice

24th International Summer Conference on Real Functions Theory Stará Lesná, 2010

Peter Eliaš Groups generated by Dirichlet sets

▲冊 ▲ 目 ▶ ▲ 目 ▶ □ ■ ● ● ● ●

$$\begin{split} \mathbb{T} &= \mathbb{R}/\mathbb{Z} - \text{the unit circle} \\ \|x\| &= \text{distance of } x \in \mathbb{R} \text{ to the nearest integer} \\ \text{since } f(x) &= \|x\| \text{ is periodic, it may be viewed as a function on } \mathbb{T} \\ \varrho(x,y) &= \|x-y\| - \text{a Polish metric on } \mathbb{T} \end{split}$$

Put $\chi_n(x) = ||nx||$. Functions $\chi_n : \mathbb{T} \to \mathbb{T}$, $n \in \mathbb{Z}$, are *characters* of \mathbb{T} , i.e., continuous group homomorphisms from \mathbb{T} to \mathbb{T} .

 $\mathsf{independent} \ = \ \mathsf{linearly} \ \mathsf{independent} \ \mathsf{over} \ \mathbb{Q}$

Theorem (Kronecker's Approximation Theorem)

Let $x_1, \ldots, x_k \in \mathbb{R}$ be independent irrational numbers and let $y_1, \ldots, y_k \in \mathbb{R}$ be arbitrary. Then for every m and $\varepsilon > 0$ there exists n > m such that for every i, $||nx_i - y_i|| < \varepsilon$.

▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ●

- X ⊆ T is called a *Dirichlet set* if there is an increasing sequence of integers {n_k}_{k∈N} such that χ_{n_k} ⇒ 0 on X.
- **2.** $X \subseteq \mathbb{T}$ is called a *Kronecker set* if for every continuous function $f : \mathbb{T} \to \mathbb{T}$ there is an increasing sequence of integers $\{n_k\}_{k \in \mathbb{N}}$ such that $\chi_{n_k} \rightrightarrows f$ on X.

Recall that $\chi_{n_k}(x) = ||n_k x||$. By the original definitions, only closed sets were considered.

- X ⊆ T is called a *Dirichlet set* if there is an increasing sequence of integers {n_k}_{k∈N} such that χ_{n_k} ⇒ 0 on X.
- **2.** $X \subseteq \mathbb{T}$ is called a *Kronecker set* if for every continuous function $f : \mathbb{T} \to \mathbb{T}$ there is an increasing sequence of integers $\{n_k\}_{k \in \mathbb{N}}$ such that $\chi_{n_k} \rightrightarrows f$ on X.

Recall that $\chi_{n_k}(x) = ||n_k x||$. By the original definitions, only closed sets were considered.

Fact

Every Kronecker set is independent.

Proof. If
$$x = x_1 + \cdots + x_k$$
 and $\chi_{n_k} \rightrightarrows f$ on $\{x, x_1, \ldots, x_k\}$ then $f(x) = f(x_1) + \cdots + f(x_k)$.

$X \subseteq \mathbb{T}$ is called

- **1.** a *pseudo-Dirichlet set* if there is an increasing sequence of integers $\{n_k\}_{k\in\mathbb{N}}$ such that $\chi_{n_k} \xrightarrow{QN} 0$ on X,
- **2.** an Arbault set if there is an increasing sequence of integers $\{n_k\}_{k\in\mathbb{N}}$ such that $\chi_{n_k} \to 0$ on X,
- **3.** a *Niemytzki set* if there is a sequence positive reals $\{a_n\}_{n\in\mathbb{N}}$ such that $\sum a_n = \infty$ and $\sum a_n\chi_n < \infty$ for $x \in X$,
- a weak Dirichlet set if X ⊆ Y for some analytic set Y such that for every Borel measure µ there is an increasing sequence of positive integers {n_k}_{k∈ℕ} satisfying ∫_Y χ_{n_k}dµ → 0.

• (10) • (10)

$X \subseteq \mathbb{T}$ is called

- **1.** a *pseudo-Dirichlet set* if there is an increasing sequence of integers $\{n_k\}_{k\in\mathbb{N}}$ such that $\chi_{n_k} \xrightarrow{QN} 0$ on X,
- **2.** an Arbault set if there is an increasing sequence of integers $\{n_k\}_{k\in\mathbb{N}}$ such that $\chi_{n_k} \to 0$ on X,
- **3.** a *Niemytzki set* if there is a sequence positive reals $\{a_n\}_{n\in\mathbb{N}}$ such that $\sum a_n = \infty$ and $\sum a_n\chi_n < \infty$ for $x \in X$,
- a weak Dirichlet set if X ⊆ Y for some analytic set Y such that for every Borel measure µ there is an increasing sequence of positive integers {n_k}_{k∈ℕ} satisfying ∫_Y χ_{n_k}dµ → 0.

Remark. In a 'standard' definition of weak Dirichlet sets, Y is allowed to be universally measurable.

Families of trigonometric thin sets

 \mathcal{K}, \mathcal{D} have bases consisting of closed subsets of \mathbb{T} $p\mathcal{D}, \mathcal{N}$ have bases consisting of F_{σ} subgroups of \mathbb{T} \mathcal{A} has a base consisting of $F_{\sigma\delta}$ subgroups of \mathbb{T} $w\mathcal{D}$ has a base consisting of analytic subgroups of \mathbb{T}

San

Permitted and additive sets

hereditary = closed under taking subsets $A + B = \{x + y : x \in A \land y \in B\}$

Definition

- **1.** Let \mathcal{F} be a hereditary family of subsets of a set X. A set $A \subseteq X$ is called \mathcal{F} -permitted if $\forall B \in \mathcal{F} \ A \cup B \in \mathcal{F}$.
- **2.** Let \mathcal{F} be a hereditary family of subsets of a group G. A set $A \subseteq G$ is called \mathcal{F} -additive if $\forall B \in \mathcal{F} \ A + B \in \mathcal{F}$.

San

Permitted and additive sets

hereditary = closed under taking subsets $A + B = \{x + y : x \in A \land y \in B\}$

Definition

- **1.** Let \mathcal{F} be a hereditary family of subsets of a set X. A set $A \subseteq X$ is called \mathcal{F} -permitted if $\forall B \in \mathcal{F} \ A \cup B \in \mathcal{F}$.
- **2.** Let \mathcal{F} be a hereditary family of subsets of a group G. A set $A \subseteq G$ is called \mathcal{F} -additive if $\forall B \in \mathcal{F} \ A + B \in \mathcal{F}$.

 $\mathsf{Perm}(\mathcal{F}) = \{A \subseteq X : A \text{ is } \mathcal{F}\text{-permitted}\}$ $\mathsf{Add}(\mathcal{F}) = \{A \subseteq X : A \text{ is } \mathcal{F}\text{-additive}\}$

Fact

- **1.** If $X \notin \mathcal{F}$ then $Perm(\mathcal{F})$ is an ideal.
- If F has a base consisting of subgroups of G then Perm(F) = Add(F).

Problem of a perfect permitted set

Problem (N. Bari, 1963)

Does there exists a perfect N-permitted set?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Does there exists a perfect N-permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a perfect set Q of measure zero such that $P + Q = \mathbb{T}$.

Does there exists a perfect N-permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a perfect set Q of measure zero such that $P + Q = \mathbb{T}$.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect Dirichlet set D such that $P + D = \mathbb{T}$.

Does there exists a perfect N-permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a perfect set Q of measure zero such that $P + Q = \mathbb{T}$.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect Dirichlet set D such that $P + D = \mathbb{T}$.

Theorem (T. Körner, 1974)

Let $P \subseteq \mathbb{T}$ be a perfect set. Then there exists a Kronecker set $K \subseteq \mathbb{T}$ such that $P + K = \mathbb{T}$.

Does there exists a perfect N-permitted set?

Erdős-Kunen-Mauldin (1981): For every perfect set P there exists a perfect set Q of measure zero such that $P + Q = \mathbb{T}$.

Eliaš (2006, 2010): For every perfect set Q there exists a perfect Dirichlet set D such that $P + D = \mathbb{T}$.

Theorem (T. Körner, 1974)

Let $P \subseteq \mathbb{T}$ be a perfect set. Then there exists a Kronecker set $K \subseteq \mathbb{T}$ such that $P + K = \mathbb{T}$.

Corollary

Let \mathcal{F} be a hereditary family generated by proper subgroups of \mathbb{T} containing all Kronecker sets. Then there is no perfect \mathcal{F} -permitted set.

・ 戸 ト ・ ヨ ト ・ ヨ ト