Relations preserving the convergence of series in topological groups

Peter Eliaš

22nd Summer Conference on Real Functions Theory Stará Lesná, 2008

Introduction

Theorem (R. Rado, 1960)

Let $f : \mathbf{R} \to \mathbf{R}$. TFAE:

1. f preserves the convergence of series, i.e., for every $\{x_n\}_{n\in\mathbb{N}}$, if $\sum x_n$ converges then $\sum f(x_n)$ converges,

2. f(x) = ax holds on a neighborhood of 0.

R. Rado, A theorem on infinite series, J. London Math. Soc. **35** (1960), 273–276.

글 🖌 🖌 글 🛌 👘

Introduction

Theorem (R. Rado, 1960)

Let $f : \mathbf{R} \to \mathbf{R}$. TFAE:

- 1. f preserves the convergence of series, i.e., for every $\{x_n\}_{n\in\mathbb{N}}$, if $\sum x_n$ converges then $\sum f(x_n)$ converges,
- 2. f(x) = ax holds on a neighborhood of 0.

R. Rado, A theorem on infinite series, J. London Math. Soc. **35** (1960), 273–276.

Problem (J. Borsík)

Characterize the functions $f : \mathbf{R} \to \mathbf{R}$ preserving the divergence of series, *i.e.*, such that $\sum f(x_n)$ is divergent for every divergent $\sum x_n$.

J. Borsík, *Functions preserving some types of series*, presented on 20th Summer Conference of Real Functions Theory, Liptovský Ján, 2006.

Problem (J. Borsík)

Characterize the functions $f : \mathbf{R} \to \mathbf{R}$ preserving the divergence of series, *i.e.*, such that $\sum f(x_n)$ is divergent for every divergent $\sum x_n$.

J. Borsík, *Functions preserving some types of series*, presented on 20th Summer Conference of Real Functions Theory, Liptovský Ján, 2006.

Typical functions preserving the divergence of series are

- f(x) = ax, for some $a \neq 0$,
- $f(x) \ge a |x|$, for some a > 0.

(프) (프) 프

Theorem (P. Eliaš)

Function $f : \mathbf{R} \to \mathbf{R}$ preserves the divergence of series iff there exist $a \neq 0$, c > 0 such that either 1. $\forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax)$, or 2. $\forall x \ (x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|)$.

Theorem (P. Eliaš)

Function $f : \mathbf{R} \to \mathbf{R}$ preserves the divergence of series iff there exist $a \neq 0, c > 0$ such that either 1. $\forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax)$, or 2. $\forall x \ (x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|)$.

The conditions above mean that the graph of f is included in one of the following sets (displayed is the case a > 0):

Peter Eliaš Relations preserving the convergence of series

 $\begin{array}{l} \leftarrow: \text{ Let } a \neq 0, \ c > 0 \text{ be such that either} \\ (1) \ \forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax), \text{ or} \\ (2) \ \forall x \ \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right). \end{array}$

Then f preserves the divergence of series (an easy exercise).

□ ▶ 《 臣 ▶ 《 臣 ▶ ○ 臣 ○ の < (~)

 $\begin{array}{l} \leftarrow: \text{ Let } a \neq 0, \ c > 0 \text{ be such that either} \\ (1) \ \forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax), \text{ or} \\ (2) \ \forall x \ \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right). \end{array}$

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For d > 0, define $P_d = f[(0,\infty)] \cap (-d,d)$, $N_d = f[(-\infty,0)] \cap (-d,d)$.

同 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ ()

 $\begin{array}{l} \Leftarrow: \text{ Let } a \neq 0, \ c > 0 \text{ be such that either} \\ (1) \ \forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax), \text{ or} \\ (2) \ \forall x \ \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right). \end{array}$

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For d > 0, define $P_d = f[(0,\infty)] \cap (-d,d), N_d = f[(-\infty,0)] \cap (-d,d).$ We say that a set $A \subseteq \mathbf{R}$ is sign-homogeneous if $A \subseteq (0,\infty)$ or $A \subseteq (-\infty,0)$.

 $\begin{array}{l} \leftarrow: \text{ Let } a \neq 0, \ c > 0 \text{ be such that either} \\ (1) \quad \forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax), \text{ or} \\ (2) \quad \forall x \ \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{2} \ge |x|\right). \end{array}$

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For d > 0, define $P_d = f[(0,\infty)] \cap (-d,d), N_d = f[(-\infty,0)] \cap (-d,d).$ We say that a set $A \subseteq \mathbf{R}$ is sign-homogeneous if $A \subseteq (0,\infty)$ or $A \subseteq (-\infty,0)$.

• There is d > 0 such that P_d , N_d are sign-homogeneous.

 \Leftarrow : Let $a \neq 0$, c > 0 be such that either

(1)
$$\forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax)$$
, or

(2)
$$\forall x \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right).$$

Then f preserves the divergence of series (an easy exercise).

- ⇒: Assume that f is divergence preserving. For d > 0, define $P_d = f[(0,\infty)] \cap (-d,d), \ N_d = f[(-\infty,0)] \cap (-d,d).$ We say that a set $A \subseteq \mathbb{R}$ is sign-homogeneous if $A \subseteq (0,\infty)$ or $A \subseteq (-\infty,0)$.
 - There is d > 0 such that P_d , N_d are sign-homogeneous. Otherwise one can find $x_n > 0$ such that $f(x_n) \rightarrow 0$ and the signs of $f(x_n)$ are alternating.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

 \Leftarrow : Let $a \neq 0$, c > 0 be such that either

(1)
$$\forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax)$$
, or

(2)
$$\forall x \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right).$$

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For d > 0, define $P_d = f[(0,\infty)] \cap (-d,d), \ N_d = f[(-\infty,0)] \cap (-d,d).$ We say that a set $A \subseteq \mathbb{R}$ is sign-homogeneous if $A \subseteq (0,\infty)$ or $A \subseteq (-\infty,0)$.

- There is d > 0 such that P_d , N_d are sign-homogeneous. Otherwise one can find $x_n > 0$ such that $f(x_n) \rightarrow 0$ and the signs of $f(x_n)$ are alternating.
- If for all d > 0 the sets P_d , N_d are nonempty and their signs are opposite then there are $a \neq 0$, c > 0 satisfying (1).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

 \Leftarrow : Let $a \neq 0$, c > 0 be such that either

(1)
$$\forall x \ (x = 0 \lor |f(x)| \ge c \lor f(x) = ax)$$
, or

(2)
$$\forall x \ \left(x = 0 \lor |f(x)| \ge c \lor \frac{f(x)}{a} \ge |x|\right).$$

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For
$$d > 0$$
, define
 $P_d = f[(0,\infty)] \cap (-d,d), \ N_d = f[(-\infty,0)] \cap (-d,d).$
We say that a set $A \subseteq \mathbf{R}$ is sign-homogeneous if $A \subseteq (0,\infty)$ or $A \subseteq (-\infty,0)$.

- There is d > 0 such that P_d , N_d are sign-homogeneous. Otherwise one can find $x_n > 0$ such that $f(x_n) \rightarrow 0$ and the signs of $f(x_n)$ are alternating.
- If for all d > 0 the sets P_d , N_d are nonempty and their signs are opposite then there are $a \neq 0$, c > 0 satisfying (1).
- If the signs of P_d , N_d are equal (or one of the sets is empty) then there are $a \neq 0$, c > 0 satisfying (2).

We shall try to generalize these results in two ways:

1. consider topological groups G, H and functions $f : G \to H$ instead of $f : \mathbf{R} \to \mathbf{R}$,

We shall try to generalize these results in two ways:

- 1. consider topological groups G, H and functions $f : G \to H$ instead of $f : \mathbf{R} \to \mathbf{R}$,
- 2. consider binary relations instead of functions.

同 ト イヨ ト イヨ ト ヨ ・ ク ۹ ()

 (G,\cdot,\mathcal{O}) is a topological group if

- (G, \cdot) is a group,
- $\bullet~({\it G},{\it O})$ is a topological space, and
- \bullet the group operations $\cdot,\ ^{-1}$ are continuous.

We denote by e_G the neutral element of G.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ の Q @

 (G,\cdot,\mathcal{O}) is a topological group if

- (G, \cdot) is a group,
- (G, \mathcal{O}) is a topological space, and
- the group operations \cdot , $^{-1}$ are continuous.

We denote by e_G the neutral element of G.

Definition

We say that G has arbitrarily small subgroups if every neighborhood of e_G contains a non-trivial subgroup of G.

 (G,\cdot,\mathcal{O}) is a topological group if

- (G, \cdot) is a group,
- (G, \mathcal{O}) is a topological space, and
- the group operations \cdot , $^{-1}$ are continuous.

We denote by e_G the neutral element of G.

Definition

We say that G has arbitrarily small subgroups if every neighborhood of e_G contains a non-trivial subgroup of G.

Examples:

• $(\mathbf{R}, +)$, $(\mathbf{R}^{n}, +)$ do not have arbitrarily small subgroups,

 (G,\cdot,\mathcal{O}) is a topological group if

- (G, \cdot) is a group,
- (G, \mathcal{O}) is a topological space, and
- \bullet the group operations $\cdot,\ ^{-1}$ are continuous.

We denote by e_G the neutral element of G.

Definition

We say that G has arbitrarily small subgroups if every neighborhood of e_G contains a non-trivial subgroup of G.

Examples:

- $(\mathbf{R}, +)$, $(\mathbf{R}^n, +)$ do not have arbitrarily small subgroups,
- ({0,1}^N, +), (\mathbf{R}^{N} , +) have arbitrarily small subgroups,

 $({\mathcal{G}},\cdot,{\mathcal{O}})$ is a topological group if

- (G, \cdot) is a group,
- (G, \mathcal{O}) is a topological space, and
- \bullet the group operations $\cdot,\ ^{-1}$ are continuous.

We denote by e_G the neutral element of G.

Definition

We say that G has arbitrarily small subgroups if every neighborhood of e_G contains a non-trivial subgroup of G.

Examples:

- $(\mathbf{R}, +)$, $(\mathbf{R}^{n}, +)$ do not have arbitrarily small subgroups,
- $(\{0,1\}^{N},+)$, $(\mathbf{R}^{N},+)$ have arbitrarily small subgroups,
- infinite products of topological groups equipped with product topology have arbitrarily small subgroups.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ● ● ● ● ● ●

A sequence $\{x_n\}_{n \in \mathbb{N}}$ is called

- Cauchy if for every neighborhood U of e_G there is N such that if m, n > N then $x_m^{-1}x_n \in U$.
- Cauchy multipliable if the sequence of products $\{\prod_{n < k} x_n\}_{k \in \mathbb{N}}$ is a Cauchy sequence.

A sequence $\{x_n\}_{n \in \mathbb{N}}$ is called

- Cauchy if for every neighborhood U of e_G there is N such that if m, n > N then $x_m^{-1}x_n \in U$.
- Cauchy multipliable if the sequence of products $\{\prod_{n < k} x_n\}_{k \in \mathbb{N}}$ is a Cauchy sequence.

Definition (W. Freedman)

Let G, H be topological groups. A function $f : G \to H$ is convergence preserving if it maps every Cauchy multipliable sequence to a Cauchy multipliable sequence.

W. Freedman, *Convergence preserving mappings in topological groups*, Topol. Appl. **154** (2007), 1089–1096.

A function $f: G \rightarrow H$ is called

- sequentially continuous at x if $x_n \to x$ implies $f(x_n) \to f(x)$,
- local sequential homomorphism if it is sequentially continuous at e_G and $x_n \to e_G \land y_n \to e_G$ implies $\exists N \ \forall n > N \ f(x_n y_n) = f(x_n)f(y_n)$.

글 🖌 🖌 글 🛌 👘

A function $f: G \rightarrow H$ is called

- sequentially continuous at x if $x_n \to x$ implies $f(x_n) \to f(x)$,
- local sequential homomorphism if it is sequentially continuous at e_G and $x_n \to e_G \land y_n \to e_G$ implies $\exists N \ \forall n > N \ f(x_n y_n) = f(x_n)f(y_n)$.

Theorem (W. Freedman, A. Shibakov)

Let G, H be Hausdorff topological groups such that H does not have arbitrarily small subgroups. TFAE:

- 1. f is convergence preserving,
- 2. f is local sequential homomorphism.

A function $f: G \rightarrow H$ is called local sequential pseudo-homomorphism if

- 1. it is sequentially continuous at e_G , and
- if x_n → e_G, y_n → e_G then for every neighborhood U of e_H there is N such that the group generated by the set
 {f(x_ny_n)⁻¹f(x_n)f(y_n) : n > N} is included in U.

Clearly if H does not have arbitrarily small subgroups then f is LSPH iff it is LSH.

A function $f: G \rightarrow H$ is called local sequential pseudo-homomorphism if

- 1. it is sequentially continuous at e_G , and
- if x_n → e_G, y_n → e_G then for every neighborhood U of e_H there is N such that the group generated by the set
 {f(x_ny_n)⁻¹f(x_n)f(y_n) : n > N} is included in U.

Clearly if H does not have arbitrarily small subgroups then f is LSPH iff it is LSH.

Definition

A sequence of subgroups $\{H_n\}_{n \in \mathbb{N}}$ of a group H is called a chain, if

- 1. every H_{n+1} is a subgroup of H_n , and
- 2. for every neighborhood U of e_H there is n such that $H_n \subseteq U$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (P. Eliaš)

Let G, H be arbitrary Hausdorff topological groups. TFAE:

- 1. f is convergence preserving,
- 2. f is LSPH,
- 3. for any sequences $x_n \to e_G$, $y_n \to e_G$ there is a chain $\{H_n\}_{n \in \mathbb{N}}$ such that $\forall^{\infty} n \ f(x_n y_n)^{-1} f(x_n) f(y_n) \in H_n$.

Theorem (P. Eliaš)

Let G, H be arbitrary Hausdorff topological groups. TFAE:

- 1. f is convergence preserving,
- 2. f is LSPH,
- 3. for any sequences $x_n \to e_G$, $y_n \to e_G$ there is a chain $\{H_n\}_{n \in \mathbb{N}}$ such that $\forall^{\infty} n \ f(x_n y_n)^{-1} f(x_n) f(y_n) \in H_n$.

Problem

Characterize the functions $f : G \to H$ which are divergence preserving, i.e., such that $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy multipliable whenever $\{f(x_n)\}_{n \in \mathbb{N}}$ is.

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

• convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,

프 문 문 프 문 문 문 문

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,

Definition

- Let G, H be topological groups. We say that $R \subseteq G \times H$ is
 - convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
 - divergence preserving if R^{-1} is convergence preserving,
 - sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

同 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ ()

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,
- sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

We will assume that G, H are Hausdorff, dom(R) = G, and rng(R) = H.

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,
- sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

We will assume that G, H are Hausdorff, dom(R) = G, and rng(R) = H.

Basic properties

1. If R is CP and $R' \subseteq R$ then R' is CP.

< ∃ >

=

DQC

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,
- sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

We will assume that G, H are Hausdorff, dom(R) = G, and rng(R) = H.

Basic properties

- 1. If R is CP and $R' \subseteq R$ then R' is CP.
- 2. If $R \subseteq G \times H$ is CP then R is sequentially continuous at (e_G, e_H) .

< ∃ →

=

3

nar

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,
- sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

We will assume that G, H are Hausdorff, dom(R) = G, and rng(R) = H.

Basic properties

- 1. If R is CP and $R' \subseteq R$ then R' is CP.
- 2. If $R \subseteq G \times H$ is CP then R is sequentially continuous at (e_G, e_H) .
- 3. If $R \subseteq G \times H$ is CP then $R \cup (G \times \{e_H\})$ is CP.

< ∃ →

□ ▶ 《 □

3

nar

Definition

Let G, H be topological groups. We say that $R \subseteq G \times H$ is

- convergence preserving if $\{y_n\}_n$ is Cauchy multipliable whenever $\{x_n\}_n$ is Cauchy multipliable and $\forall n \ (x_n, y_n) \in R$,
- divergence preserving if R^{-1} is convergence preserving,
- sequentially continuous at (x, y) if $y_n \to y$ whenever $x_n \to x$ and $\forall n (x_n, y_n) \in R$.

We will assume that G, H are Hausdorff, dom(R) = G, and rng(R) = H.

Basic properties

- 1. If R is CP and $R' \subseteq R$ then R' is CP.
- 2. If $R \subseteq G \times H$ is CP then R is sequentially continuous at (e_G, e_H) .
- 3. If $R \subseteq G \times H$ is CP then $R \cup (G \times \{e_H\})$ is CP.
- 4. If G has a countable base of neighborhoods of e_G then the topological closure of a CP relation is CP.

< ∃ >

< 17 ▶

nar

A subsemigroup of a group G is a set $A \subseteq G$ containing e_G and closed under multiplication.

= 990

A subsemigroup of a group G is a set $A \subseteq G$ containing e_G and closed under multiplication.

Theorem

1. Every sequentially continuous subsemigroup of $G \times H$ is CP.

프 문 문 프 문 문 문 문

Э

nar

A subsemigroup of a group G is a set $A \subseteq G$ containing e_G and closed under multiplication.

Theorem

- 1. Every sequentially continuous subsemigroup of $G \times H$ is CP.
- If R ⊆ G × H is sequentially continuous and R ∩ (U × H) = S ∩ (U × H) for some subsemigroup S and a neighborhood U of (e_G, e_H) then R is CP.

프 문 문 프 문 문 문 문

A subsemigroup of a group G is a set $A \subseteq G$ containing e_G and closed under multiplication.

Theorem

- 1. Every sequentially continuous subsemigroup of $G \times H$ is CP.
- If R ⊆ G × H is sequentially continuous and R ∩ (U × H) = S ∩ (U × H) for some subsemigroup S and a neighborhood U of (e_G, e_H) then R is CP.

Problem

Is every CP relation a subset of $S \cup ((G \setminus U) \times H) \cup (G \times \{e_H\})$ for some sequentially closed subsemigroup S and a neighborhood U of e_G ?

同 ト イヨ ト イヨ ト