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Introduction

Theorem (R. Rado, 1960)

Let f : R → R. TFAE:

1. f preserves the convergence of series, i.e., for every {xn}n∈N, if∑
xn converges then

∑
f (xn) converges,

2. f (x) = ax holds on a neighborhood of 0.

R. Rado, A theorem on infinite series, J. London Math. Soc. 35 (1960),

273–276.
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The inverse problem

Problem (J. Borśık)

Characterize the functions f : R → R preserving the divergence of series,
i.e., such that

∑
f (xn) is divergent for every divergent

∑
xn.

J. Borśık, Functions preserving some types of series, presented on

20th Summer Conference of Real Functions Theory, Liptovský Ján, 2006.

Typical functions preserving the divergence of series are

f (x) = ax , for some a 6= 0,

f (x) ≥ a |x |, for some a > 0.
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Solution of the inverse problem

Theorem (P. Eliaš)

Function f : R → R preserves the divergence of series iff
there exist a 6= 0, c > 0 such that either

1. ∀x (x = 0 ∨ |f (x)| ≥ c ∨ f (x) = ax), or

2. ∀x
(
x = 0 ∨ |f (x)| ≥ c ∨ f (x)

a
≥ |x |

)
.

The conditions above mean that the graph of f is included in one of the
following sets (displayed is the case a > 0):
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Sketch of the proof

⇐: Let a 6= 0, c > 0 be such that either

(1) ∀x (x = 0 ∨ |f (x)| ≥ c ∨ f (x) = ax), or

(2) ∀x
(
x = 0 ∨ |f (x)| ≥ c ∨ f (x)

a
≥ |x |

)
.

Then f preserves the divergence of series (an easy exercise).

⇒: Assume that f is divergence preserving. For d > 0, define
Pd = f [(0,∞)] ∩ (−d , d), Nd = f [(−∞, 0)] ∩ (−d , d).
We say that a set A ⊆ R is sign-homogeneous if A ⊆ (0,∞) or A ⊆ (−∞, 0).

There is d > 0 such that Pd , Nd are sign-homogeneous. Otherwise one
can find xn > 0 such that f (xn) → 0 and the signs of f (xn) are alternating.

If for all d > 0 the sets Pd , Nd are nonempty and their signs are opposite
then there are a 6= 0, c > 0 satisfying (1).

If the signs of Pd , Nd are equal (or one of the sets is empty) then there
are a 6= 0, c > 0 satisfying (2).
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Possibilities of generalization

We shall try to generalize these results in two ways:

1. consider topological groups G , H and functions f : G → H instead
of f : R → R,

2. consider binary relations instead of functions.

Peter Eliaš Relations preserving the convergence of series



Possibilities of generalization

We shall try to generalize these results in two ways:

1. consider topological groups G , H and functions f : G → H instead
of f : R → R,

2. consider binary relations instead of functions.
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Topological groups

(G , ·,O) is a topological group if

(G , ·) is a group,

(G ,O) is a topological space, and

the group operations ·, −1 are continuous.

We denote by eG the neutral element of G .

Definition

We say that G has arbitrarily small subgroups if every neighborhood of
eG contains a non-trivial subgroup of G .

Examples:

(R,+), (Rn,+) do not have arbitrarily small subgroups,

({0, 1}N,+), (RN,+) have arbitrarily small subgroups,

infinite products of topological groups equipped with product
topology have arbitrarily small subgroups.
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Preserving the convergence in topological groups

Definition

A sequence {xn}n∈N is called

Cauchy if for every neighborhood U of eG there is N such that if
m, n > N then x−1

m xn ∈ U.

Cauchy multipliable if the sequence of products
{∏

n<k xn

}
k∈N

is a
Cauchy sequence.

Definition (W. Freedman)

Let G , H be topological groups.
A function f : G → H is convergence preserving if it maps every Cauchy
multipliable sequence to a Cauchy multipliable sequence.

W. Freedman, Convergence preserving mappings in topological groups,

Topol. Appl. 154 (2007), 1089–1096.
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Results of Freedman and Shibakov

Definition

A function f : G → H is called

sequentially continuous at x if xn → x implies f (xn) → f (x),

local sequential homomorphism if it is sequentially continuous at eG

and xn → eG ∧ yn → eG implies ∃N ∀n > N f (xnyn) = f (xn)f (yn).

Theorem (W. Freedman, A. Shibakov)

Let G, H be Hausdorff topological groups such that H does not have
arbitrarily small subgroups. TFAE:

1. f is convergence preserving,

2. f is local sequential homomorphism.
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The case of H having arbitrarily small subgroups

Definition

A function f : G → H is called local sequential pseudo-homomorphism if

1. it is sequentially continuous at eG , and

2. if xn → eG , yn → eG then for every neighborhood U of eH there is N
such that the group generated by the set
{f (xnyn)

−1f (xn)f (yn) : n > N} is included in U.

Clearly if H does not have arbitrarily small subgroups then f is LSPH iff it is

LSH.

Definition

A sequence of subgroups {Hn}n∈N of a group H is called a chain, if

1. every Hn+1 is a subgroup of Hn, and

2. for every neighborhood U of eH there is n such that Hn ⊆ U.
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The main result

Theorem (P. Eliaš)

Let G, H be arbitrary Hausdorff topological groups. TFAE:

1. f is convergence preserving,

2. f is LSPH,

3. for any sequences xn → eG , yn → eG there is a chain {Hn}n∈N such
that ∀∞n f (xnyn)

−1f (xn)f (yn) ∈ Hn.

Problem

Characterize the functions f : G → H which are divergence preserving,
i.e., such that {xn}n∈N is Cauchy multipliable whenever {f (xn)}n∈N is.
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Relations preserving the convergence and divergence

Definition

Let G , H be topological groups. We say that R ⊆ G × H is

convergence preserving if {yn}n is Cauchy multipliable whenever
{xn}n is Cauchy multipliable and ∀n (xn, yn) ∈ R,

divergence preserving if R−1 is convergence preserving,

sequentially continuous at (x , y) if yn → y whenever xn → x and
∀n (xn, yn) ∈ R.

We will assume that G , H are Hausdorff, dom(R) = G , and rng(R) = H.

Basic properties

1. If R is CP and R ′ ⊆ R then R ′ is CP.

2. If R ⊆ G × H is CP then R is sequentially continuous at (eG , eH).

3. If R ⊆ G × H is CP then R ∪ (G × {eH}) is CP.

4. If G has a countable base of neighborhoods of eG then the
topological closure of a CP relation is CP.
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Subsemigroups

Definition

A subsemigroup of a group G is a set A ⊆ G containing eG and closed
under multiplication.

Theorem

1. Every sequentially continuous subsemigroup of G × H is CP.

2. If R ⊆ G × H is sequentially continuous and
R ∩ (U × H) = S ∩ (U × H) for some subsemigroup S and a
neighborhood U of (eG , eH) then R is CP.

Problem

Is every CP relation a subset of S ∪ ((G \U)×H)∪ (G × {eH}) for some
sequentially closed subsemigroup S and a neighborhood U of eG?
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