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Notation

T – the unit circle – compact Polish group

T = {z ∈ C} : |z| = 1}, x ∈ R 7→ e2πix ∈ T
multiplication and topology inherited from C
T = R/Z, x ∈ R 7→ φ(x) = [x]∼ where x ∼ y ⇔ x− y ∈ Z
addition modulo integers, quotient topology
d(x, y) = ‖x− y‖, where ‖t‖ = min{|x| : φ(x) = t}, is an
invariant metric on T

C(X,Y ) – space of all continuous functions f : X → Y with the
topology of uniform convergence

K(X) – space of compact subsets of X (with Vietoris topology),

characters of T – continuous group homomorphisms χ ∈ C(T,T),
these are exactly functions χn(x) = nx for n ∈ Z
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Kronecker sets

Definition (Hewitt, Kakutani (1960), Rudin (1962))

A set E ∈ K(T) is a Kronecker set if
(∀f ∈ C(T,T))(∀ε > 0)(∃n) ‖χn(x)− f(x)‖ < ε.

We can assume that n is arbitrarily large.

Every finite independent set is Kronecker,
where E is independent if k1x1 + · · ·+ knxn = 0 implies
k1 = · · · = kn = 0 for any k1, . . . , kn ∈ Z, x1, . . . , xn ∈ E.

Every Kronecker set is independent.

(Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.

Every perfect set has a perfect Kronecker subset.

For any perfect set P there exists a perfect Kronecker set Q
such that P +Q = T.
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Dirichlet sets

Definition (Kahane (1969))

A set E ∈ K(T) is a Dirichlet set if
(∀ε > 0)(∃n 6= 0) ‖χn(x)‖ < ε.

We can assume that n is arbitrarily large.

Every Kronecker set is a Dirichlet set.

A group generated by a Dirichlet set is proper subgroup of T,
hence is meager and of Lebesgue measure zero.

A shift of a Dirichlet set is a Dirichlet set.
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Operations on families of sets and functions

Let fk ⇒ f denote the uniform convergence of a sequence of
functions.

Consider the following binary relation R ⊆ K(T)× C(T,T):
R(E, f) iff there exists an increasing sequence {nk}k∈N such that
χnk

⇒ f on E.

For H ⊆ C(T,T) and E ⊆ K(T), define
K(H) =

{
E ∈ K(T) : (∀f ∈ H)R(E, f)

}
,

F(E) =
{
f ∈ C(T,T) : (∀E ∈ E)R(E, f)

}
.

Examples. {E : E is Kronecker} = K(C(T,T)),
{E : E is Dirichlet} = K({0}) = K({χn : n ∈ Z}).
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Galois connection

Pair (F ,K) forms a Galois connection between ordered sets
(P(K(T)),⊆) and (P(C(T,T)),⊆), i.e., E ⊆ F(H) iff H ⊆ K(E),
for any E ,H.

K and F are order-reversing.

K ◦ F and F ◦ K are closure operators.

(E ,H) is called a stable pair if E = K(H) and H = F(E).
Stable pairs ordered by (E1,H1) ≤ (E2,H2) iff H1 ⊆ H2 iff
E1 ⊇ E2 form a complete lattice, where∨
i(Ei,Hi) =

(⋂
i Ei,F

(⋂
i Ei
))

,∧
i(Ei,Hi) =

(
K
(⋂

iHi
)
,
⋂
iHi

)
.
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Lattice of stable pairs

What is the structure of this lattice?

top element:
(
{E : E is Kronecker}, C(T,T)

)
bottom element: (K(T), ∅)
one atom:

(
{E : E is Dirichlet}, {χn : n ∈ Z}

)
The last statement follows from the following fact.

Lemma
Let f ∈ C(T,T). Then f ∈ {χn : n ∈ Z} iff
(∀x, y ∈ T) f(x− y) = f(x)− f(y).
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Strongly Dirichlet sets

Denote C = {f ∈ C(T,T) : f is constant},
TC = {χn + c : n ∈ Z ∧ c ∈ T}.

Definition
A set E ∈ K(T) is a strongly Dirichlet set if E ∈ K(C ).

Fact. K(C ) = K(TC ).

Lemma
Let f ∈ C(T,T). Then f ∈ TC iff
(∀x, y ∈ T) f(2x− y) = 2f(x)− f(y).

Theorem(
{E : E is strongly Dirichlet}, TC

)
is a stable pair.
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Affinely independent sets

Fact
1. Every strongly Dirichlet set E is affinely independent, i.e.,
k1x1 + · · ·+ knxn = 0 implies that k1 + · · ·+ kn = 0, for all
x1, . . . , xn ∈ E and k1, . . . , kn ∈ Z.

2. Every finite affinely independent set is strongly Dirichlet.

For E ⊆ T, denote

Aff(E) = {x ∈ T : (∃x1, . . . , xn ∈ E)(∃k, k1, . . . , kn ∈ Z)
k = k1 + · · ·+ kn 6= 0 ∧ kx = k1x1 + · · ·+ knxn}.

Then E is affinely independent iff E ⊆ Aff(F ) for some
independent set F .

Theorem
If E ⊆ T is Kronecker then Aff(E) is strongly Dirichlet.
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m-Dirichlet sets

Let p ∈ N. Denote Cm = {f ∈ C(T,T) : (∀x ∈ T)mf(x) = 0},
TCm = {χn : n ∈ Z}+ Cm.

Definition
A set E ∈ K(T) is an m-Dirichlet set if E = K(Cm).

Fact. K(Cm) = K(TCm).

Lemma
Let f ∈ C(T,T). Then f ∈ TCm iff (∀x, y ∈ T) f(2x− y) =
2f(x)− f(y) ∧ mf(x− y) = mf(x)−mf(y).

Theorem(
{E : E is m-Dirichlet}, TCm

)
is a stable pair.
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m-independent sets

Definition
Let m ∈ N. A set E ⊆ T is m-Dirichlet if k1x1 + · · ·+ knxn = 0
implies that m | k1 + · · ·+ kn, for any x1, . . . , xn ∈ E and
k1, . . . , kn ∈ Z.

Theorem
1. Every m-Dirichlet set is m-independent.

2. Every finite m-independent is m-Dirichlet.
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