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Let (T,+) be the circle group (R/Z).

For x ∈ T, let ‖x‖ denote the distance of x to 0.

Definition Let F ⊆ P(T). A set A ⊆ T is F-

permitted if for every B ∈ F, the sumset A + B

can be covered by some C ∈ F.

Example X ⊆ T is an N-set if there exists a se-

quence {an}n∈N of non-negative reals such that∑
an =∞ and

∑
an ‖nx‖ <∞ for all x ∈ X.

Let N be the family of all N-sets. N has a base

consisting of Fσ subgroups of T. Every N-set is

meager and has Lebesgue measure zero.

Theorem (Arbault, Erdös, 1952) Every countable

set is N -permitted.



Problem Does there exist a perfect N -permitted

set?

Answers

1. Arbault (1952) – yes

2. Bari (1961) – found error in Arbault’s proof

3. Lafontaine (1969) – no; proof seems to be in-

correct, no references found

4. Bukovský, Rec law, Repický, Kholshchevnikova,

Bartoszyński, Scheepers, . . . (1990’s) – consistent

examples of uncountable N -permitted sets (e.g., γ-

set)

5. conjecture (Bukovský) – every N -permitted set

is perfectly meager, i.e., meager relatively to any

perfect set

Example X ⊆ T is an Arbault set if there exists

an increasing sequence of natural numbers {nk}k∈N
such that ‖nk x‖ → 0 on X. Let A denote the family

of all Arbault sets.

A has a base consisting of Fσδ subgroups of T.

Every Arbault set is meager and has Lebesgue

measure zero. A * N , N * A.

Theorem A (P.E., 2003) Every A-permitted set

is perfectly meager.

Corollary 1. There is no perfect A-permitted set.

2. It is relatively consistent that there is no A-

permitted set of the size c.



Two proofs of Theorem A

1. using a combinatorial characterization of the in-

clusion in the family A
2. using a strengthening of a theorem by Erdös,

Kunen, and Mauldin – simpler and more general

Both proofs make use of Kronecker’s theorem.

Characterization of the inclusion in A

Definition Let {nk}k∈N be an increasing sequence

of natural numbers.

The subgroup of T characterized by {nk}k∈N is the

set A{nk}k = {x ∈ T : ‖nk x‖ → 0}.

Theorem (P.E. 2003) Let {nk}k∈N, {mj}j∈N be

increasing sequences of natural numbers, and let
nk
nk+1

→ 0. Then A{nk}k ⊆ A{mj}j iff

there exists a matrix z ∈ ZN×N such that

1. (∀j)mj =
∑

k
zk,j nk,

2. (∀k) (∀∞j) zk,j = 0,

3. (∃c) (∀j)
∑

k

∣∣∣zk,j∣∣∣ < c.

Remark Condition nk
nk+1

→ 0 ensures that the set

A{nk}k has a perfect subset.

Problem Can this condition be omitted?



Erdös–Kunen–Mauldin Theorem

Theorem (Erdös, Kunen, Mauldin 1981) For any

perfect set P ⊆ R there exists a perfect set Q hav-

ing Lebesgue measure zero such that P +Q = R.

Definition X ⊆ T is a Dirichlet set if there exists

an increasing sequence of natural numbers {nk}k∈N
such that ‖nk x‖⇒ 0 on X. Let D be the family of

all Dirichlet sets.

D has a base consisting of perfect subsets of T.

Every Dirichlet set is meager and has Lebesgue

measure zero. D ⊆ N ∩A.

Theorem (P.E. 2005) For any perfect set P ⊆ T
there exists a Dirichlet set D such that P +D = T.

Corollary If F ⊇ D then there is no perfect F-

permitted set.



Perfectly meager sets

Definition A set X is perfectly meager if for every
perfect set P , X is meager relatively to P , i.e., the
set X ∩ P is meager in the relative topology of P .

Other variants of perfectly meager sets
1. (Zakrzewski) X is universally meager iff for any
countable family C of perfect sets, there is an Fσ-
set F ⊇ X such that F is meager relatively to every
P ∈ C.
2. (Nowik, Weiss) X is perfectly meager in tran-
sitive sense iff for any perfect set P there is an
Fσ-set F ⊇ X such that F is meager relatively to
any translation of P .

perfectly meager in transitive sense ⇒ universally
meager ⇒ perfectly meager

Lemma For any perfect set P ⊆ T there exists
an increasing sequence of natural numbers {nk}k∈N
such that for any sequence {yk}k∈N in T, the set{

x ∈ T : (∀∞k) ‖nk x− yk‖ ≤ 2−k
}

(1)

is dense in P .

Theorem B If F ⊆ P(T) contains all sets of the
form (1) and for every A ∈ F there is an Fσ-set
F ⊇ A such that A+F 6= T, then every F-permitted
set is perfectly meager in transitive sense.

Remark The conditions of Theorem B can be eas-
ily checked for F = N , A.



Families generated by analytic subgroups of T

Question What families F do satisfy the condi-

tions of Theorem B? If F has a base consisting of

subgroups of T, does (*) already follow?

(*) for any A ∈ F there is Fσ-set F ⊇ A such that

A+ F 6= T

Theorem (Laczkovich 1998) Every proper ana-

lytic subgroup of R can be covered by an Fσ-set

of Lebesgue measure zero.

Theorem C (P.E. 2006) For every proper analytic

subgroup G of T there exists an Fσ-set F ⊇ A such

that A+ F has Lebesgue measure zero.

Corollary Let F has a base consisting of proper

analytic subgroups of T and let F ⊇ D. Then every

F-permitted set is perfectly meager in transitive

sense.
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