Permitted sets and analytic

subgroups of $\mathbb T$

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Let $(\mathbb{T}, +)$ be the circle group (\mathbb{R}/\mathbb{Z}) . For $x \in \mathbb{T}$, let ||x|| denote the distance of x to 0.

Definition Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{T})$. A set $A \subseteq \mathbb{T}$ is \mathcal{F} permitted if for every $B \in \mathcal{F}$, the sumset A + Bcan be covered by some $C \in \mathcal{F}$.

Example $X \subseteq \mathbb{T}$ is an *N-set* if there exists a sequence $\{a_n\}_{n \in \mathbb{N}}$ of non-negative reals such that $\sum a_n = \infty$ and $\sum a_n ||nx|| < \infty$ for all $x \in X$.

Let \mathcal{N} be the family of all N-sets. \mathcal{N} has a base consisting of F_{σ} subgroups of \mathbb{T} . Every N-set is meager and has Lebesgue measure zero.

Theorem (Arbault, Erdös, 1952) Every countable set is \mathcal{N} -permitted.

Problem Does there exist a perfect \mathcal{N} -permitted set?

Answers

1. Arbault (1952) – yes

2. Bari (1961) – found error in Arbault's proof

3. Lafontaine (1969) – no; proof seems to be incorrect, no references found

4. Bukovský, Recław, Repický, Kholshchevnikova, Bartoszyński, Scheepers, ... (1990's) – consistent examples of uncountable \mathcal{N} -permitted sets (e.g., γ -set)

5. conjecture (Bukovský) – every \mathcal{N} -permitted set is perfectly meager, i.e., meager relatively to any perfect set

Example $X \subseteq \mathbb{T}$ is an *Arbault set* if there exists an increasing sequence of natural numbers $\{n_k\}_{k \in \mathbb{N}}$ such that $||n_k x|| \to 0$ on X. Let \mathcal{A} denote the family of all Arbault sets.

 \mathcal{A} has a base consisting of $F_{\sigma\delta}$ subgroups of \mathbb{T} . Every Arbault set is meager and has Lebesgue measure zero. $\mathcal{A} \nsubseteq \mathcal{N}, \mathcal{N} \nsubseteq \mathcal{A}$.

Theorem A (P.E., 2003) Every A-permitted set is perfectly meager.

Corollary 1. There is no perfect A-permitted set. 2. It is relatively consistent that there is no A-permitted set of the size \mathfrak{c} .

Two proofs of Theorem A

1. using a combinatorial characterization of the inclusion in the family ${\cal A}$

2. using a strengthening of a theorem by Erdös, Kunen, and Mauldin – simpler and more general

Both proofs make use of Kronecker's theorem.

Characterization of the inclusion in $\ensuremath{\mathcal{A}}$

Definition Let $\{n_k\}_{k \in \mathbb{N}}$ be an increasing sequence of natural numbers.

The subgroup of \mathbb{T} characterized by $\{n_k\}_{k\in\mathbb{N}}$ is the set $A_{\{n_k\}_k} = \{x \in \mathbb{T} : ||n_k x|| \to 0\}.$

Theorem (P.E. 2003) Let $\{n_k\}_{k\in\mathbb{N}}, \{m_j\}_{j\in\mathbb{N}}$ be increasing sequences of natural numbers, and let $\frac{n_k}{n_{k+1}} \to 0$. Then $A_{\{n_k\}_k} \subseteq A_{\{m_j\}_j}$ iff there exists a matrix $z \in \mathbb{Z}^{\mathbb{N} \times \mathbb{N}}$ such that 1. $(\forall j) m_j = \sum_k z_{k,j} n_k$, 2. $(\forall k) (\forall^{\infty} j) z_{k,j} = 0$, 3. $(\exists c) (\forall j) \sum_k |z_{k,j}| < c$.

Remark Condition $\frac{n_k}{n_{k+1}} \to 0$ ensures that the set $A_{\{n_k\}_k}$ has a perfect subset.

Problem Can this condition be omitted?

Erdös–Kunen–Mauldin Theorem

Theorem (Erdös, Kunen, Mauldin 1981) For any perfect set $P \subseteq \mathbb{R}$ there exists a perfect set Q having Lebesgue measure zero such that $P + Q = \mathbb{R}$.

Definition $X \subseteq \mathbb{T}$ is a *Dirichlet set* if there exists an increasing sequence of natural numbers $\{n_k\}_{k \in \mathbb{N}}$ such that $||n_k x|| \Rightarrow 0$ on X. Let \mathcal{D} be the family of all Dirichlet sets.

 \mathcal{D} has a base consisting of perfect subsets of \mathbb{T} . Every Dirichlet set is meager and has Lebesgue measure zero. $\mathcal{D} \subseteq \mathcal{N} \cap \mathcal{A}$.

Theorem (P.E. 2005) For any perfect set $P \subseteq \mathbb{T}$ there exists a Dirichlet set D such that $P + D = \mathbb{T}$.

Corollary If $\mathcal{F} \supseteq \mathcal{D}$ then there is no perfect \mathcal{F} -permitted set.

Perfectly meager sets

Definition A set X is *perfectly meager* if for every perfect set P, X is meager relatively to P, i.e., the set $X \cap P$ is meager in the relative topology of P.

Other variants of perfectly meager sets

1. (Zakrzewski) X is *universally meager* iff for any countable family C of perfect sets, there is an F_{σ} -set $F \supseteq X$ such that F is meager relatively to every $P \in C$.

2. (Nowik, Weiss) X is perfectly meager in transitive sense iff for any perfect set P there is an F_{σ} -set $F \supseteq X$ such that F is meager relatively to any translation of P.

perfectly meager in transitive sense \Rightarrow universally meager \Rightarrow perfectly meager

Lemma For any perfect set $P \subseteq \mathbb{T}$ there exists an increasing sequence of natural numbers $\{n_k\}_{k \in \mathbb{N}}$ such that for any sequence $\{y_k\}_{k \in \mathbb{N}}$ in \mathbb{T} , the set

$$\left\{x \in \mathbb{T} : (\forall^{\infty} k) \|n_k x - y_k\| \le 2^{-k}\right\}$$
(1)

is dense in P.

Theorem B If $\mathcal{F} \subseteq \mathcal{P}(\mathbb{T})$ contains all sets of the form (1) and for every $A \in \mathcal{F}$ there is an F_{σ} -set $F \supseteq A$ such that $A+F \neq \mathbb{T}$, then every \mathcal{F} -permitted set is perfectly meager in transitive sense.

Remark The conditions of Theorem B can be easily checked for $\mathcal{F} = \mathcal{N}, \ \mathcal{A}$.

Families generated by analytic subgroups of $\ensuremath{\mathbb{T}}$

Question What families \mathcal{F} do satisfy the conditions of Theorem B? If \mathcal{F} has a base consisting of subgroups of \mathbb{T} , does (*) already follow?

Theorem (Laczkovich 1998) Every proper analytic subgroup of \mathbb{R} can be covered by an F_{σ} -set of Lebesgue measure zero.

Theorem C (P.E. 2006) For every proper analytic subgroup G of \mathbb{T} there exists an F_{σ} -set $F \supseteq A$ such that A + F has Lebesgue measure zero.

Corollary Let \mathcal{F} has a base consisting of proper analytic subgroups of \mathbb{T} and let $\mathcal{F} \supseteq \mathcal{D}$. Then every \mathcal{F} -permitted set is perfectly meager in transitive sense.

^(*) for any $A \in \mathcal{F}$ there is F_{σ} -set $F \supseteq A$ such that $A + F \neq \mathbb{T}$

References

- 1. Arbault J., *Sur l'ensemble do convergence absolue d'une série trigonométriqe*, Bull. Soc. Math. France (1952)
- 2. Erdös P., Kunen K., Mauldin R.D., *Some additive properties of sets of real numbers*, Fund. Math. (1981)
- 3. Eliaš P., *The inclusions between Arbault sets*, Acta Univ. Carolin. Math. Phys. (2003)
- 4. Eliaš P., Arbault permitted sets are perfectly meager, Tatra Mt. Math. Publ. (2005)
- 5. Laczkovich M., *Analytic subgroups of the reals*, Proc. Amer. Math. Soc. (1998)
- 6. Lafontaine J., *Réunions d'ensembles de convergence absolue*, Mém. Soc. Math. France (1969)
- 7. Nowik A., Weiss T., *Not every Q-set is perfectly meager in the transitive sense*, Proc. Amer. Math. Soc. (2000)