Variations on Kronecker and Dirichlet sets on the circle

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

27th International Summer Conference on Real Functions Theory Niedzica, 2013

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Notation

$$\begin{split} \mathbb{T} &- \text{the unit circle} - \text{Polish topological group} \\ \textbf{multiplicative notation:} \quad \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} \\ & x \in \mathbb{R} \mapsto e^{2\pi i x} \in \mathbb{T} \\ & \text{multiplication and topology inherited from } \mathbb{C} \end{split}$$

additive notation:
$$\mathbb{T} = \mathbb{R}/\mathbb{Z}$$

 $x \in \mathbb{R} \mapsto \phi(x) = [x]_{\sim}$ where $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$
addition modulo integers, quotient topology
 $\|t\| = \min\{|x| : \phi(x) = t\}, \|\cdot\| : \mathbb{T} \to \left[0, \frac{1}{2}\right]$
 $\varrho(x, y) = \|x - y\|$ is a metric on \mathbb{T}

For X, Y metric spaces, C(X, Y) is space of all continuous functions $f: X \to Y$ with the topology of uniform convergence.

Characters of \mathbb{T} , i.e., group homomorphisms $\chi \in C(\mathbb{T}, \mathbb{T})$, are exactly functions $\chi_n(x) = nx$ for $n \in \mathbb{Z}$.

Dirichlet's Theorem

Let $x_1, \ldots, x_k \in \mathbb{T}$, $\varepsilon > 0$, $m \in \mathbb{N}$. There exists n > m such that $||nx_i|| < \varepsilon$ for $i = 1, \ldots, k$.

Kronecker's Theorem

Let $x_1, \ldots, x_k \in \mathbb{T}$ are independent, i.e., $\ell_1 x_1 + \cdots + \ell_k x_k = 0$ implies $\ell_1 = \cdots = \ell_k = 0$, for all $\ell_1, \ldots, \ell_k \in \mathbb{Z}$. Let $y_1, \ldots, y_k \in \mathbb{T}$, $\varepsilon > 0$, $m \in \mathbb{N}$. Then there exists n > m such that $||nx_i - y_i|| < \varepsilon$ for $i = 1, \ldots, k$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A closed set $E \subseteq \mathbb{T}$ is a **Kronecker set** if $\forall_{f \in C(\mathbb{T},\mathbb{T})} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon.$

- Every finite independent set is Kronecker.
- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- (Kaufman, 1967) If P is a perfect totally disconnected set then $\{f \in C(P, \mathbb{T}) : f[P] \text{ is Kronecker}\}$ is comeager in $C(P, \mathbb{T})$.

・ロト ・回ト ・ヨト ・ヨト

A closed set $E \subseteq \mathbb{T}$ is a **Kronecker set** if

 $\forall_{f \in C(\mathbb{T},\mathbb{T})} \, \forall_{\varepsilon > 0} \, \forall_m \, \exists_{n > m} \, \forall_{x \in E} \, \|nx - f(x)\| < \varepsilon.$

• Every finite independent set is Kronecker.

- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- (Kaufman, 1967) If P is a perfect totally disconnected set then $\{f \in C(P, \mathbb{T}) : f[P] \text{ is Kronecker}\}$ is comeager in $C(P, \mathbb{T})$.

イロト イポト イヨト イヨト 二日

San

A closed set $E \subseteq \mathbb{T}$ is a **Kronecker set** if $\forall_{f \in C(\mathbb{T},\mathbb{T})} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon.$

- Every finite independent set is Kronecker.
- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- (Kaufman, 1967) If P is a perfect totally disconnected set then $\{f \in C(P, \mathbb{T}) : f[P] \text{ is Kronecker}\}$ is comeager in $C(P, \mathbb{T})$.

イロト イポト イヨト イヨト 二日

San

A closed set $E \subseteq \mathbb{T}$ is a **Kronecker set** if $\forall_{f \in C(\mathbb{T},\mathbb{T})} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon.$

- Every finite independent set is Kronecker.
- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- (Kaufman, 1967) If P is a perfect totally disconnected set then $\{f \in C(P, \mathbb{T}) : f[P] \text{ is Kronecker}\}$ is comeager in $C(P, \mathbb{T})$.

イロト イポト イヨト イヨト 二日

A closed set $E \subseteq \mathbb{T}$ is a **Kronecker set** if $\forall_{f \in C(\mathbb{T},\mathbb{T})} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon.$

- Every finite independent set is Kronecker.
- Every Kronecker set is independent.
- (Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.
- (Kaufman, 1967) If P is a perfect totally disconnected set then $\{f \in C(P, \mathbb{T}) : f[P] \text{ is Kronecker}\}$ is comeager in $C(P, \mathbb{T})$.

イロト イポト イヨト イヨト 二日

A closed set $E \subseteq \mathbb{T}$ is a **Dirichlet set** if $\forall_{\varepsilon>0} \forall_m \exists_{n>m} \forall_{x \in E} ||nx|| < \varepsilon.$

- Every Kronecker set is Dirichlet.
- Every Dirichlet set has Lebesgue measure zero.
- A shift of a Dirichlet set (i.e., a + E where $a \in \mathbb{T}$ and E is Dirichlet) is a Dirichlet set.
- If E is a Dirichlet set then E + E is a Dirichlet set.

・ロト ・回ト ・ヨト ・ヨト

San

A closed set $E \subseteq \mathbb{T}$ is a **Dirichlet set** if $\forall_{\varepsilon>0} \forall_m \exists_{n>m} \forall_{x \in E} ||nx|| < \varepsilon.$

• Every Kronecker set is Dirichlet.

- Every Dirichlet set has Lebesgue measure zero.
- A shift of a Dirichlet set (i.e., a + E where $a \in \mathbb{T}$ and E is Dirichlet) is a Dirichlet set.
- If E is a Dirichlet set then E + E is a Dirichlet set.

・ロト ・回ト ・ヨト ・ヨト

San

A closed set $E \subseteq \mathbb{T}$ is a **Dirichlet set** if $\forall_{\varepsilon>0} \forall_m \exists_{n>m} \forall_{x \in E} ||nx|| < \varepsilon.$

- Every Kronecker set is Dirichlet.
- Every Dirichlet set has Lebesgue measure zero.
- A shift of a Dirichlet set (i.e., a + E where a ∈ T and E is Dirichlet) is a Dirichlet set.
- If E is a Dirichlet set then E + E is a Dirichlet set.

イロト イポト イヨト

Sar

```
A closed set E \subseteq \mathbb{T} is a Dirichlet set if
\forall_{\varepsilon>0} \forall_m \exists_{n>m} \forall_{x \in E} ||nx|| < \varepsilon.
```

- Every Kronecker set is Dirichlet.
- Every Dirichlet set has Lebesgue measure zero.
- A shift of a Dirichlet set (i.e., a + E where $a \in \mathbb{T}$ and E is Dirichlet) is a Dirichlet set.
- If E is a Dirichlet set then E + E is a Dirichlet set.

イロト イポト イヨト

Sar

- A closed set $E \subseteq \mathbb{T}$ is a **Dirichlet set** if $\forall_{\varepsilon>0} \forall_m \exists_{n>m} \forall_{x \in E} ||nx|| < \varepsilon.$
 - Every Kronecker set is Dirichlet.
 - Every Dirichlet set has Lebesgue measure zero.
 - A shift of a Dirichlet set (i.e., a + E where $a \in \mathbb{T}$ and E is Dirichlet) is a Dirichlet set.
 - If E is a Dirichlet set then E + E is a Dirichlet set.

・ロット (日) ・ (日) ・ (日)

For $E \subseteq \mathbb{T}$, denote UA(E) the set of all functions that are uniformly approximable by characters on E, i.e., $UA(E) = \{f \in C(E, \mathbb{T}) : \forall_{\varepsilon > 0} \forall_m \exists_{|n| > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon\}$ = limit points of $\{\chi_n \upharpoonright E : n \in \mathbb{Z}\}$ in $C(E, \mathbb{T})$.

Then E is a Kronecker set iff $UA(E) = C(E, \mathbb{T})$, E is a Dirichlet set iff $\mathbf{0}_E \in UA(E)$.

- (Körner, 1970) There exists a countable independent Dirichlet set which is not Kronecker.
- (Körner, 1974) For every perfect set $P \subseteq \mathbb{T}$ there exists a perfect Kronecker set K such that $P + K = \mathbb{T}$.

For $E \subseteq \mathbb{T}$, denote UA(E) the set of all functions that are uniformly approximable by characters on E, i.e., $UA(E) = \{f \in C(E, \mathbb{T}) : \forall_{\varepsilon > 0} \forall_m \exists_{|n| > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon\}$ $= \text{limit points of } \{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \text{ in } C(E, \mathbb{T}).$ Then E is a Kronecker set iff $UA(E) = C(E, \mathbb{T})$,

E is a Dirichlet set iff $\mathbf{0}_E \in \mathrm{UA}(E)$.

• (Körner, 1970) There exists a countable independent Dirichlet set which is not Kronecker.

• (Körner, 1974) For every perfect set $P \subseteq \mathbb{T}$ there exists a perfect Kronecker set K such that $P + K = \mathbb{T}$.

For $E \subseteq \mathbb{T}$, denote UA(E) the set of all functions that are uniformly approximable by characters on E, i.e., $UA(E) = \{f \in C(E, \mathbb{T}) : \forall_{\varepsilon > 0} \forall_m \exists_{|n| > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon\}$ $= \text{limit points of } \{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \text{ in } C(E, \mathbb{T}).$ Then E is a Kronecker set iff $UA(E) = C(E, \mathbb{T})$,

E is a Dirichlet set iff $\mathbf{0}_E \in \mathrm{UA}(E)$.

- (Körner, 1970) There exists a countable independent Dirichlet set which is not Kronecker.
- (Körner, 1974) For every perfect set $P \subseteq \mathbb{T}$ there exists a perfect Kronecker set K such that $P + K = \mathbb{T}$.

For $E \subseteq \mathbb{T}$, denote UA(E) the set of all functions that are uniformly approximable by characters on E, i.e., $UA(E) = \{f \in C(E, \mathbb{T}) : \forall_{\varepsilon > 0} \forall_m \exists_{|n| > m} \forall_{x \in E} ||nx - f(x)|| < \varepsilon\}$ $= \text{limit points of } \{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \text{ in } C(E, \mathbb{T}).$ Then E is a Kronecker set iff $UA(E) = C(E, \mathbb{T})$,

E is a Dirichlet set iff $\mathbf{0}_E \in \mathrm{UA}(E)$.

- (Körner, 1970) There exists a countable independent Dirichlet set which is not Kronecker.
- (Körner, 1974) For every perfect set $P \subseteq \mathbb{T}$ there exists a perfect Kronecker set K such that $P + K = \mathbb{T}$.

$$\begin{split} E \subseteq \mathbb{T} \text{ is a Dirichlet set iff} \\ \forall_{a \in \mathbb{T}} \, \forall_{\varepsilon > 0} \, \forall_m \, \exists_{n > m} \, \forall_{x \in E} \, \|n(x + a)\| < \varepsilon. \end{split}$$

Can we omit the parentheses?

Definition

A closed set $E \subseteq \mathbb{T}$ is a **strong Dirichlet set** if $\forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx + a|| < \varepsilon.$

Then E is a strong Dirichlet set iff UA(E) contains all constant functions.

・ロト ・回ト ・ヨト ・ヨト

3

San

$E \subseteq \mathbb{T} \text{ is a Dirichlet set iff} \\ \forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} \|n(x + a)\| < \varepsilon.$

Can we omit the parentheses?

Definition

A closed set $E \subseteq \mathbb{T}$ is a strong Dirichlet set if $\forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx + a|| < \varepsilon.$

Then E is a strong Dirichlet set iff UA(E) contains all constant functions.

イロト イポト イヨト イヨト 二日

$E \subseteq \mathbb{T} \text{ is a Dirichlet set iff} \\ \forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} \|n(x + a)\| < \varepsilon.$

Can we omit the parentheses?

Definition A closed set $E \subseteq \mathbb{T}$ is a strong Dirichlet set if $\forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} ||nx + a|| < \varepsilon.$

Then E is a strong Dirichlet set iff UA(E) contains all constant functions.

 $E \subseteq \mathbb{T} \text{ is a Dirichlet set iff} \\ \forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} \|n(x + a)\| < \varepsilon.$

Can we omit the parentheses?

Definition A closed set $E \subseteq \mathbb{T}$ is a strong Dirichlet set if $\forall_{a \in \mathbb{T}} \forall_{\varepsilon > 0} \forall_m \exists_{n > m} \forall_{x \in E} \|nx + a\| < \varepsilon.$

Then E is a strong Dirichlet set iff $\mathrm{UA}(E)$ contains all constant functions.

Fact

1. Every strong Dirichlet set E is affinely independent, i.e., $\ell_1 x_1 + \ldots \ell_k x_k = 0$ implies $\ell_1 + \cdots + \ell_k = 0$, for all $x_1, \ldots, x_k \in E$ and $\ell_1, \ldots, \ell_k \in \mathbb{Z}$.

2. Every finite affinely independent set is strong Dirichlet.

For $E \subseteq \mathbb{T}$, denote

 $\operatorname{Aff}(E) = \{ x \in \mathbb{T} : (\exists x_1, \dots, x_k \in E) (\exists \ell, \ell_1, \dots, \ell_k \in \mathbb{Z}) \}$

 $n = \ell_1 + \dots + \ell_k \neq 0 \land \ell x = n_1 x_1 + \dots + \ell_k x_k \}.$ Then E is affinely independent iff $E \subseteq Aff(F)$ for some independent set F.

Theorem

If $E \subseteq \mathbb{T}$ is Kronecker then Aff(E) is strong Dirichlet.

Fact

1. Every strong Dirichlet set E is affinely independent, i.e., $\ell_1 x_1 + \ldots \ell_k x_k = 0$ implies $\ell_1 + \cdots + \ell_k = 0$, for all $x_1, \ldots, x_k \in E$ and $\ell_1, \ldots, \ell_k \in \mathbb{Z}$.

2. Every finite affinely independent set is strong Dirichlet.

For $E \subseteq \mathbb{T}$, denote

$$\operatorname{Aff}(E) = \{ x \in \mathbb{T} : (\exists x_1, \dots, x_k \in E) (\exists \ell, \ell_1, \dots, \ell_k \in \mathbb{Z}) \}$$

$$n = \ell_1 + \dots + \ell_k \neq 0 \land \ell x = n_1 x_1 + \dots + \ell_k x_k \}.$$

Then E is affinely independent iff $E \subseteq Aff(F)$ for some independent set F.

Theorem

If $E \subseteq \mathbb{T}$ is Kronecker then Aff(E) is strong Dirichlet.

イロト イポト イヨト イヨト 二日

San

Fact

1. Every strong Dirichlet set E is affinely independent, i.e., $\ell_1 x_1 + \ldots \ell_k x_k = 0$ implies $\ell_1 + \cdots + \ell_k = 0$, for all $x_1, \ldots, x_k \in E$ and $\ell_1, \ldots, \ell_k \in \mathbb{Z}$.

2. Every finite affinely independent set is strong Dirichlet.

For $E \subseteq \mathbb{T}$, denote $\begin{array}{l} \operatorname{Aff}(E) = \{ x \in \mathbb{T} : (\exists x_1, \dots, x_k \in E) (\exists \ell, \ell_1, \dots, \ell_k \in \mathbb{Z}) \\ n = \ell_1 + \dots + \ell_k \neq 0 \ \land \ \ell x = n_1 x_1 + \dots + \ell_k x_k \}. \\ \end{array}$ Then E is affinely independent iff $E \subseteq \operatorname{Aff}(F)$ for some independent set F.

Theorem

If $E \subseteq \mathbb{T}$ is Kronecker then Aff(E) is strong Dirichlet

Fact

1. Every strong Dirichlet set E is affinely independent, i.e., $\ell_1 x_1 + \ldots \ell_k x_k = 0$ implies $\ell_1 + \cdots + \ell_k = 0$, for all $x_1, \ldots, x_k \in E$ and $\ell_1, \ldots, \ell_k \in \mathbb{Z}$.

2. Every finite affinely independent set is strong Dirichlet.

For $E \subseteq \mathbb{T}$, denote $Aff(E) = \{x \in \mathbb{T} : (\exists x_1, \dots, x_k \in E) (\exists \ell, \ell_1, \dots, \ell_k \in \mathbb{Z}) \\ n = \ell_1 + \dots + \ell_k \neq 0 \land \ell x = n_1 x_1 + \dots + \ell_k x_k \}.$ Then E is affinely independent iff $E \subseteq Aff(F)$ for some independent set F.

Theorem

If $E \subseteq \mathbb{T}$ is Kronecker then Aff(E) is strong Dirichlet.

Theorem

- 1. There exists a countable independent Dirichlet set which is not a strong Dirichlet set.
- 2. There exists a countable independent strong Dirichlet set which is not a Kronecker set.

▲□→ ▲ □→ ▲ □→

SQ C

- UA(E) is a closed subgroup of $C(E, \mathbb{T})$.
- $UA(E) = C(E, \mathbb{T})$ iff E is a Kronecker set.
- $UA(E) \neq \emptyset$ iff E is a Dirichlet set.
- If $UA(E) \neq \emptyset$ then $\{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \subseteq UA(E)$.

- UA(E) is a closed subgroup of $C(E, \mathbb{T})$.
- $UA(E) = C(E, \mathbb{T})$ iff E is a Kronecker set.
- $UA(E) \neq \emptyset$ iff E is a Dirichlet set.
- If $UA(E) \neq \emptyset$ then $\{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \subseteq UA(E)$.

- UA(E) is a closed subgroup of $C(E, \mathbb{T})$.
- $UA(E) = C(E, \mathbb{T})$ iff E is a Kronecker set.
- $UA(E) \neq \emptyset$ iff E is a Dirichlet set.
- If $UA(E) \neq \emptyset$ then $\{\chi_n \mid E : n \in \mathbb{Z}\} \subseteq UA(E)$.

- UA(E) is a closed subgroup of $C(E, \mathbb{T})$.
- $UA(E) = C(E, \mathbb{T})$ iff E is a Kronecker set.
- $UA(E) \neq \emptyset$ iff E is a Dirichlet set.
- If $UA(E) \neq \emptyset$ then $\{\chi_n \upharpoonright E : n \in \mathbb{Z}\} \subseteq UA(E)$.

For $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$, denote $K(\mathcal{F}) = \{E \subseteq \mathbb{T} : \mathcal{F} \upharpoonright E \subseteq UA(E)\}$, where $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$.

For $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$, denote $\mathcal{K}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \mathrm{UA}_{\mathbb{T}}(E)$, where $\mathrm{UA}_{\mathbb{T}}(E) = \{ f \in C(\mathbb{T}, \mathbb{T}) : f \upharpoonright E \in \mathrm{UA}(E) \}.$

K(E) is a closed subgroup of C(T, T), for every E ⊆ P(T).
F ⊆ K(K(F)), for every F ⊆ C(T, T).

Definition

$$\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$$
 is stable if $\mathcal{F} = \mathcal{K}(K(\mathcal{F}))$.

For $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$, denote $K(\mathcal{F}) = \{E \subseteq \mathbb{T} : \mathcal{F} \upharpoonright E \subseteq UA(E)\}$, where $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$.

For $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$, denote $\mathcal{K}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \mathrm{UA}_{\mathbb{T}}(E)$, where $\mathrm{UA}_{\mathbb{T}}(E) = \{ f \in C(\mathbb{T}, \mathbb{T}) : f \upharpoonright E \in \mathrm{UA}(E) \}.$

• $\mathcal{K}(\mathcal{E})$ is a closed subgroup of $C(\mathbb{T},\mathbb{T})$, for every $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$. • $\mathcal{F} \subseteq \mathcal{K}(K(\mathcal{F}))$, for every $\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$.

Definition $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$ is stable if $\mathcal{F} = \mathcal{K}(K(\mathcal{F}))$.

For $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$, denote $K(\mathcal{F}) = \{E \subseteq \mathbb{T} : \mathcal{F} \upharpoonright E \subseteq \mathrm{UA}(E)\}$, where $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$.

For $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$, denote $\mathcal{K}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \mathrm{UA}_{\mathbb{T}}(E)$, where $\mathrm{UA}_{\mathbb{T}}(E) = \{ f \in C(\mathbb{T}, \mathbb{T}) : f \upharpoonright E \in \mathrm{UA}(E) \}.$

• $\mathcal{K}(\mathcal{E})$ is a closed subgroup of $C(\mathbb{T},\mathbb{T})$, for every $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$. • $\mathcal{F} \subseteq \mathcal{K}(K(\mathcal{F}))$, for every $\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$.

Definition

 $\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$ is stable if $\mathcal{F} = \mathcal{K}(K(\mathcal{F}))$.

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle

For $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$, denote $K(\mathcal{F}) = \{E \subseteq \mathbb{T} : \mathcal{F} \upharpoonright E \subseteq UA(E)\}$, where $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$.

For $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$, denote $\mathcal{K}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \mathrm{UA}_{\mathbb{T}}(E)$, where $\mathrm{UA}_{\mathbb{T}}(E) = \{ f \in C(\mathbb{T}, \mathbb{T}) : f \upharpoonright E \in \mathrm{UA}(E) \}.$

• $\mathcal{K}(\mathcal{E})$ is a closed subgroup of $C(\mathbb{T},\mathbb{T})$, for every $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$.

•
$$\mathcal{F} \subseteq \mathcal{K}(K(\mathcal{F}))$$
, for every $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$.

Definition

$$\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$$
 is stable if $\mathcal{F} = \mathcal{K}(K(\mathcal{F}))$.

For $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$, denote $K(\mathcal{F}) = \{E \subseteq \mathbb{T} : \mathcal{F} \upharpoonright E \subseteq UA(E)\}$, where $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$.

For $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$, denote $\mathcal{K}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \mathrm{UA}_{\mathbb{T}}(E)$, where $\mathrm{UA}_{\mathbb{T}}(E) = \{ f \in C(\mathbb{T}, \mathbb{T}) : f \upharpoonright E \in \mathrm{UA}(E) \}.$

• $\mathcal{K}(\mathcal{E})$ is a closed subgroup of $C(\mathbb{T},\mathbb{T})$, for every $\mathcal{E} \subseteq \mathcal{P}(\mathbb{T})$.

•
$$\mathcal{F} \subseteq \mathcal{K}(K(\mathcal{F}))$$
, for every $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$.

Definition

$$\mathcal{F} \subseteq C(\mathbb{T},\mathbb{T})$$
 is stable if $\mathcal{F} = \mathcal{K}(K(\mathcal{F}))$.

Problem

Characterize stable families $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$ and the corresponding families $K(\mathcal{F}) \subseteq \mathcal{P}(\mathbb{T})$.

Theorem

Family $\{\chi_n : n \in \mathbb{Z}\} = \mathcal{K}(\mathcal{D})$ is stable, where $\mathcal{D} = \{E \subseteq \mathbb{T} : E \text{ is a Dirichlet set}\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Problem

Characterize stable families $\mathcal{F} \subseteq C(\mathbb{T}, \mathbb{T})$ and the corresponding families $K(\mathcal{F}) \subseteq \mathcal{P}(\mathbb{T})$.

Theorem

Family $\{\chi_n : n \in \mathbb{Z}\} = \mathcal{K}(\mathcal{D})$ is stable, where $\mathcal{D} = \{E \subseteq \mathbb{T} : E \text{ is a Dirichlet set}\}.$

・ロット (日) ・ (日) ・ (日)

Sar

References

- Hewitt E., Kakutani S., A class of multiplicative linear functionals on a measure algebra of a locally compact abelian group, Illinois J. Math. 4 (1960), 553–574.
- 2. Rudin W., *Fourier Analysis on Groups*, Interscience Tracts in Pure and Applied Mathematics **12**, Interscience Publishers, 1962.
- Kaufman R., A functional method for linear sets, Israel J. Math 5 (1967), 185–187.
- 4. Kahane J.-P., Approximation par des exponentielles imaginaires; ensembles de Dirichlet et ensembles de Kronecker, In: Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968), Birkhäuser, 1969, pp. 190–202.
- 5. Körner T.W., Some results on Kronecker, Dirichlet and Helson sets, Ann. Inst. Fourier **20** (1970), 219–234.
- 6. Körner T.W., Some results on Kronecker, Dirichlet and Helson sets II, J. Anal. Math. 27 (1974), 260–388.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで