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Trigonometric series

A series of the form

∞∑
n=0

(an cos 2πnx + bn sin 2πnx) (1)

is called a trigonometric series.

We will consider functions which are either periodic with period 1, or
defined on [0, 1] with f (0) = f (1). We identify [0, 1] and the unit circle T.

J. Fourier (1812): It is possible to express every function f : [0, 1]→ R
as a sum of a trigonometric series.

Actually, for every nice function f there exists a trigonometric series (1)
such that the equality

f (x) =
∞∑
n=0

(an cos 2πnx + bn sin 2πnx)

holds true for all points x with some exceptions.
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Absolute convergence of trigonometric series

Theorem (A. Denjoy, N. Luzin, 1912)

If a trigonometric series (1) absolutely converges on a set of positive

Lebesgue measure then
∞∑
n=0

(|an|+ |bn|) <∞ and hence the series

absolutely converges everywhere.

N. Luzin proved also analogous theorem for the category.

There exist sets that are both meager and of Lebesgue measure zero for
which the conclusion of above theorem holds true, e.g., the standard
Cantor set.
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Sets of absolute convergence

Definition (Marcinkiewicz, 1938)

A set X ⊆ T is called a set of absolute convergence (also N-set) if there
exists a trigonometric series which absolutely converges on X but is not
absolutely converging everywhere.

N-sets are meager and of Lebesgue measure zero.

Every countable set is an N-set. There exists a perfect, hence
uncountable, N-set. Cantor set is not an N-set.

A subgroup of T generated by an N-set is an N-set.

Every N-set is included in an Fσ N-set.

Linear transformation of an N-set is again an N-set.
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Sets of absolute convergence

For x ∈ R denote ‖x‖ = min{|x − k | : k ∈ Z}.
We have ‖−x‖ = ‖x‖ and ‖x‖ − ‖y‖ ≤ ‖x + y‖ ≤ ‖x‖+ ‖y‖.
Function %(x , y) = ‖x − y‖ is a metric on T.

We have ‖x‖ ≤ |sinπx | ≤ π ‖x‖.

Theorem (R. Salem, 1941)

A set X ⊆ T is an N-set if and only if there exist a sequence {an}∞n=1 of

non-negative reals such that
∞∑
n=1

an =∞ and
∞∑
n=1

an ‖nx‖ <∞ for x ∈ X .

The proof is based on the use of Dirichlet theorem.
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Families of trigonometric thin sets

A set X ⊆ T is called

an N0-set if there exists an increasing sequence {nk}∞k=0 such that
∞∑
n=0
‖nkx‖ <∞ for x ∈ X ,

a Dirichlet set (also D-set) if there exists an increasing sequence
{nk}∞k=0 such that ‖nkx‖⇒ 0 on X ,
a pseudo-Dirichlet set (also pD-set) if there exists an increasing
sequence {nk}∞k=0 such that
(∀x ∈ X ) (∃K ) (∀k ≥ K ) ‖nkx‖ < 2−k ,
an Arbault set (also A-set) if there exists an increasing sequence
{nk}∞k=0 such that lim

k→∞
‖nkx‖ = 0 for all x ∈ X .

We denote by N , N0, D, pD, A denote families of all N-sets, N0-sets,
D-sets, pD-sets, and A-sets, respectively.

D ⊂ pD ⊂ N0 ⊂ N , N0 ⊂ A, and all inclusions are proper.
All families except D are generated by proper Borel subgroups of T.
There exist two D-sets X and Y such that the group generated by
X ∪ Y is T.
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Relations between thin sets

Theorem (P. Eliaš, 2003)

1. If
∞∑
n=0

nk
nk+1

<∞ then
{

x :
∞∑
k=0
‖nkx‖ <∞

}
∈ N0 \ pD.

2. If lim
k→∞

nk
nk+1

= 0 then
{

x : lim
k→∞

‖nkx‖ → 0
}
∈ A \ N .

3. If lim
k→∞

ak = 0,
∞∑
k=0

ak =∞, and
∞∑
k=0

ak
nk

nk+1
<∞, then{

x :
∞∑
k=0

ak ‖nkx‖ <∞
}
∈ N \ A.

Proof goes by a suitable construction of a nested sequence of intervals of
the length 1/nk .

E.g., every interval I with the length 1/nk has a subinterval J with the
length 1/nk+1 such that for all x ∈ J, ‖nkx‖ ≤ nk/nk+1.

Or, if nk ≤ m ≤ nk+1 and nk/nk+1 ≤ 1/4 then every interval I with the
length 1/nk contains a subinterval J with the length 1/nk+1 such that for
all x ∈ J, ‖mx‖ ≥ 1/8.
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Inclusions between Arbault sets

Notation. For a given increasing sequence of natural numbers
a = {an}n∈N denote A(a) =

{
x : lim
n→∞

‖anx‖ = 0
}

.

Problem (D. Maharam, A. Stone)

Characterize those sequences a = {an}n∈N for which the set A(a) is
uncountable.

Question. When does the inclusion A(a) ⊆ A(b) hold true?
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Inclusions between Arbault sets

Definition

Let k ∈ N, and let z = {zm,n}m,n∈N be an infinite matrix of integers.
We say that z is a k-bounded matrix if

1. (∀n) (∃M) (∀m > M) zm,n = 0, and

2. (∀m)
∞∑
n=0

zm,n ≤ k ,

z is a bounded matrix if it is a k-bounded matrix for some k ∈ N.

Theorem (P. Eliaš, 2003)

Let a = {an}n∈N, b = {bm}m∈N be increasing sequences of natural
numbers, and let lim

n→∞

an
an+1

= 0. The following conditions are equivalent.

1. A(a) ⊆ A(b),

2. there exists a bounded matrix z such that b =∗ z .a,

i.e., (∃M) (∀m > M) bm =
∞∑
n=0

zm,nan.
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Inclusions between Arbault sets

z is a bounded matrix iff
(∀n) {m : zm,n 6= 0} is finite and (∃k) (∀m)

∞∑
n=0

zm,n ≤ k

1. A(a) ⊆ A(b)
2. there is a bounded matrix z such that b =∗ z .a

Sketch of the proof of ¬2⇒ ¬1.

Assume a0 = 1. There exists z such that b = z .a and for all m, n,

|zm,n| ≤
1
2

(
1 +

an+1
an

)
.

z is not a bounded matrix, hence either

set {zm,n : m, n ∈ Z} is unbounded, or

set {|Sm| : m ∈ N} is unbounded, where Sm = {n : zm,n 6= 0}, or

there is n such that the set M = {m : zm,n 6= 0} is infinite but
{m ∈ M : zm,n′ 6= 0} is finite for every n′ > n, or

for every n and every infinite set M ⊆ {m : zm,n 6= 0} there is n′ > n
such that the set {m ∈ M : zm,n′} is infinite too.

In each case we find x ∈ A(a) \ A(b).
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Permitted sets

Definition (J. Arbault, 1952)

A set X ⊆ T is called permitted if for every N-set Y , X ∪ Y is an N-set.

Theorem (J.Arbault, P. Erdös, 1952)

Every countable set is permitted.

Question. Does there exist a perfect permitted set?

J. Arbault (1952) provided an example of a perfect permitted set
N. Bari (1961) found a gap in this example and conjectured that the
gap cannot be filled
J. Lafontaine (1968) proved that there is no perfect permitted set,
but his proof contains a gap, too
(1995–2000) several “consistently uncountable” examples of
uncountable permitted sets are found (L. Bukovský, M. Repický, T.
Bartoszyński, I. Rec law, M. Scheepers)
L. Bukovský conjectured that every permitted set is perfectly
meager, i.e., meager relatively to any perfect set
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uncountable permitted sets are found (L. Bukovský, M. Repický, T.
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F-permitted sets

Definition

Let F be a family of set. A set X is called F-permitted if for every
Y ∈ F , X ∪ Y ∈ F . Denote Perm(F) = {X : X is F-permitted}.

If F is hereditary then Perm(F) is an ideal.

If F is hereditary and has a base consisting of subgroups then X is
F-permitted iff it is F-additive, i.e., X + Y ∈ F for every Y ∈ F .
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Problem of perfect permitted sets

Theorem (P. Eliaš, 2005)

A-permitted sets are perfectly meager.

Proof uses the characterization of the inclusion between Arbault sets by
bounded matrices.

Theorem (P. Eliaš, 2006)

F-permitted sets are perfectly meager for F = pD, N0, N .

Proof uses a strengthening of a theorem of P. Erdös, K. Kunen and R. D.
Mauldin.

Theorem (P. Eliaš, 2008)

F-permitted sets are perfectly meager for any hereditary family F ⊇ D
having a basis consisting of proper analytic subgroups of T.

Proof utilizes a strengthening of a theorem of M. Laczkovich.
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A strengthening of Erdös-Kunen-Mauldin theorem

Theorem (P. Erdös, K. Kunen, R. D. Mauldin, 1981)

For every perfect set P ⊆ R there exists a perfect set M of Lebesgue
measure zero such that P + M = R.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a Dirichlet set D such that that
P + D = T.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then there is no perfect F-permitted set.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a pseudo-Dirichlet set D such
that (∀y ∈ T) P ∩ (D + y) is dense in P.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then every F-permitted set is perfectly meager.

Peter Eliaš Thin sets of reals related to trigonometric series



A strengthening of Erdös-Kunen-Mauldin theorem

Theorem (P. Erdös, K. Kunen, R. D. Mauldin, 1981)

For every perfect set P ⊆ R there exists a perfect set M of Lebesgue
measure zero such that P + M = R.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a Dirichlet set D such that that
P + D = T.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then there is no perfect F-permitted set.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a pseudo-Dirichlet set D such
that (∀y ∈ T) P ∩ (D + y) is dense in P.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then every F-permitted set is perfectly meager.

Peter Eliaš Thin sets of reals related to trigonometric series



A strengthening of Erdös-Kunen-Mauldin theorem

Theorem (P. Erdös, K. Kunen, R. D. Mauldin, 1981)

For every perfect set P ⊆ R there exists a perfect set M of Lebesgue
measure zero such that P + M = R.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a Dirichlet set D such that that
P + D = T.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then there is no perfect F-permitted set.

Theorem (P. Eliaš, 2006)

For every perfect set P ⊆ T there exists a pseudo-Dirichlet set D such
that (∀y ∈ T) P ∩ (D + y) is dense in P.

Corollary. If F is hereditary, D ⊆ F , and F has a basis from proper
subgroups of T then every F-permitted set is perfectly meager.

Peter Eliaš Thin sets of reals related to trigonometric series



A strengthening of Erdös-Kunen-Mauldin theorem

Prove: for every perfect set P there exists D ∈ D such that P + D = T.

Theorem (L. Kronecker)

Let x1, . . . , xk ∈ T \Q be linearly independent over Q, y1, . . . , yk ∈ T,
ε > 0. Then there exists arbitrarily large n such that (∀i) ‖nxi − yi‖ < ε.

We define by induction a sequence of finite sets Ak ⊆ P linearly
independent over Q.
Let Bk be a finite 2−k−2-dense subset of T, εk > 0. By Kronecker’s
theorem there exists nk such that ‖nka− b‖ ≤ 2−k−2 for all a ∈ Ak ,
b ∈ Bk .
Find εk+1 ≤ εk/2 such that if ‖x − a‖ ≤ εk+1 then ‖nka− b‖ ≤ 2−k−1.
Let Ak+1 ⊆ P be such that (∀a ∈ Ak) (∃a′ ∈ Ak+1) ‖a− a′‖ ≤ εk+1/2.
For a given y ∈ T, there are bk ∈ Bk such that ‖nky − bk‖ ≤ 2−k−2.
By induction choose pk ∈ Ak such that ‖pk − pk+1‖ ≤ εk+1/2.
Sequence {pk}∞k=0 converges to p ∈ P such that
(∀k) ‖nk(y − p)‖ ≤ 2−k , so y ∈ P + D. �
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Permitted sets are transitively meager

Definition (A. Nowik, T. Weiss)

A set X ⊆ T is called transitively meager (or perfectly meager in
transitive sense, or AFC ′)
if for every perfect set P there exists an Fσ-set F ⊇ P such that for every
y ∈ T, P ∩ (F + y) is meager in P.

transitively meager ⇒ universally meager ⇒ perfectly meager

Both implications are known to be consistently proper.

Corollary. Let F ⊇ D be a hereditary family generated by proper
subgroups of T, satisfying

(∀E ∈ F) (∃Fσ-set F ⊇ E ) E + F 6= T. (2)

Then every F-permitted set is transitively meager.

Fact. Families pD, N0, N , A satisfy condition (2).
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A strengthening of Laczkovich’s theorem

Theorem (M. Laczkovich, 1998)

Let E be a proper analytic subgroup of R. Then there is an Fσ-set
F ⊇ E having Lebesgue measure zero.

Let E denote the σ-ideal generated by closed subsets of T of Lebesgue
measure zero. It is known that E is properly included in M∩N .

Theorem (P. Eliaš)

Let E be a proper analytic subgroup of T. Then there exists an Fσ-set
F ⊇ E such that E + F ∈ E .

Corollary. Every proper analytic subgroup of T can be separated by an
Fσ-set from one of its cosets.

Problem

Is it possible to separate a proper analytic subgroup of T from any of its
cosets?
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Analytic sets

Notation.
ω – natural numbers, ωω – infinite sequences of natural numbers,
ω<ω – finite sequences of natural numbers

A set is called analytic if it is a continuous image of a Borel set in some
Polish space.

A set A is analytic iff there exists a Suslin scheme for A, i.e., an indexed
system {At : t ∈ ω<ω} of closed sets such that s ⊇ t ⇒ As ⊆ At and
A =

⋃
x∈ωω

⋂
n∈ω

Ax�n.
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Analytic subgroups

Lemma

Let A be a proper analytic subgroup of T. Then there exists a Suslin
scheme {At : t ∈ ωω} for A such that

1. (∀t ∈ ω<ω \ ∅) At is nowhere dense

2.
∑

t∈ω<ω\∅
diam(At) <∞

3. (∀t ∈ ω<ω) (∃n) (∀s ∈ ωω, |s| > n) (∃C countable) As ⊆ At + C

Theorem (S. Solecki)

Let A be an analytic set, I be an ideal generated by some family of
closed sets. Then either A ∈ I or there exists a Gδ-set G ⊆ A such that
no portion of G is in I.

a portion of a set means a nonempty relatively open subset
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